©゙" doubtnut

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 78

Physics

1. The $x-t$ graph of a particle undergoing
simple harmonic motion is shown below. The
accelertion of the particle at $t=4 / 3 s$ is

A. $\frac{\sqrt{3}}{32} \pi^{2} \mathrm{~cm} \mathrm{~s}^{-2}$
B. $\frac{-\pi^{2}}{32} \mathrm{~cm} \mathrm{~s}^{-2}$
C. $\frac{\pi^{2}}{32} \mathrm{~cm} \mathrm{~s}^{-2}$
D. $-\frac{\sqrt{3}}{32} \pi^{2} \mathrm{~cm} \mathrm{~s}^{-2}$

- Watch Video Solution

2. In a one-dimensional collision between two identical particles. A and B, B is stationary and

A has momentum p before impact. During impact, B gives an impulse J to A. Find the coefficient of restitution between A and B ?
A. $\frac{2 J}{P}-1$
B. $\frac{2 J}{P}+1$
C. $\frac{J}{P}+1$
D. $\frac{J}{P}-1$

Answer: A

- Watch Video Solution

3. The string of pendulum of length I is displaced through 90° from the vertical and released. Then the minimum strength of the string in order to withstand the tension, as the pendulum passes through the mean position is
A. $m g$
B. 2 mg

C. 3 mg

D. 4 mg

Answer: C

(D) Watch Video Solution

4. In the circuit shown, each resistor is of resistance R. the equivalent resistance between
the terminals A and B is

A. 2 R
B. 1.3 R
C. 1.5 R
D. 15 R

Answer: C
5. The circuit shown in the figure consists of two resistances $R_{1} \& R_{2}$ connected to two ideal voltmetres $V_{1} \& V_{2}$. Assume that a voltmeter reads $\Delta V=-\int_{a}^{b} \vec{E} \cdot d \vec{l} \quad$ between its
terminlas. A time - varying magnetic field
$B(t)=B_{0} t$ (where B_{0} is a positive contant of proper dimensions and t is time) exists in a circular region of radius a and it is directed into the plane of the figure. The reading of
voltmeter V_{2} is

$$
\begin{aligned}
& \text { A. } \frac{\pi a^{2} B_{0} R_{1}}{R_{1}+R_{2}} \\
& \text { B. }-\frac{\pi a^{2} B_{0} R_{2}}{R_{1}+R_{2}} \\
& \text { C. }-\frac{\pi a^{2} B_{0} R_{1}}{R_{1}+R_{2}} \\
& \text { D. } \frac{\pi a^{2} B_{0} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Answer: B
6. The mass of a planet and its diameter are three times those of earth's. Then the acceleration due to gravity on the surface of the planet is : $\left(g=9.8 m s^{-2}\right)$
A. $3.3 m s^{-2}$
B. $4.9 m s^{-2}$
C. $19.6 m s^{-2}$
D. $29.4 m s^{-2}$

- Watch Video Solution

7. A car, starting from rest, accelerates at the
rate f through a distance s, then continues at constant speed for time t and then decelerates
at the rate $\mathrm{f} / 2$ to come to rest. If the total distance travelled is 15 s , then
A. $S=f t$
B. $S=\frac{1}{6} f t^{2}$

$$
\begin{aligned}
& \text { C. } S=\frac{1}{2} f t^{2} \\
& \text { D. } S=\frac{1}{72} f t^{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

8. A particle of mass m moving with a speed u strikes a smooth horizontal surface at an angle
45°. The particle rebounds at an angle ϕ with speed v. If coefficient of restituion is $\frac{1}{\sqrt{3}}$, then
angle ϕ is

A. 30°
B. 45°
C. 60°
D. 37°

Answer: A
(D) Watch Video Solution
9. An ideal gas expands isothermally from volume V_{1} to V_{2} and is then compressed to original volume V_{1} adiabatically. Initialy pressure is P_{1} and final pressure is P_{3}. The total work done is W. Then
A. $P_{3}>P_{1}, W>0$
B. $P_{3}<P_{1}, W<0$
C. $P_{3}>P_{1}, W<0$
D. $P_{3}=P_{1}, W=0$

Answer: C

D Watch Video Solution

10. One mole of an ideal gas is taken from state
A to state B by three different processes (a)
$A C B$, (b) $A D B$ and (c) $A E B$ as shown in the
$P-V$ diagram. The heat absorbed by the gas

A. Greater in process (b) than in (a)
B. The least in process (b)
C. The same in (a) and (c)
D. Less in (c) than in (b)

Answer: D
11. Two long parallel wires carry currents i_{1} and
i_{2} such that $i_{1}>i_{2}$. When the currents are in
the same direction, the magnetic field at a point midway between the wires is $6 \times 10^{-6} T$.

If the direction of i_{2} is reversed, the field becomes $3 \times 10^{-5} T$. The ratio $\frac{i_{1}}{i_{2}}$ is
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. $\frac{1}{5}$

Answer: C

- Watch Video Solution

12.

Given
$R_{1}=1 o h m, R_{2}=2 o h m, C_{1}=2 \mu F, C_{2}=4 \mu F$

The time constants (in μS) for the circuits I, II,

III are respectively
(I)

(III)
A. $18, \frac{8}{9}, 4$
B. $18,4, \frac{8}{9}$
C. $4, \frac{8}{9}, 18$
D. $\frac{8}{9}, 18,4$

- Watch Video Solution

13. A liquid of density p is coming out of a hose pipe of radius a with horizontal speed v and hits a mesh. 50% of the liquid passes through the mesh unaffected . 25 \% comes back with the same speed .The resultant pressure on the mesh will be:
A. $\frac{1}{2} \rho v^{2}$
B. $\frac{3}{2} \rho v^{2}$
C. $3 \rho v^{2}$

D. $\frac{3}{4} \rho v^{2}$

Answer: D

- Watch Video Solution

14. Assume that the nuclear binding energy per nucleon (B / A) versus mass number (A) is as shown in the figure. Use

this plot to choose the correct choice(s) given below. Figure
A. Fusion of two nuclei with mass numbers
lying in the range of $1<A<50$ will release energy.
B. Fusion of two nuclei with mass numbers
lying in the range of $51<A<100$ will
consume energy.
C. Fission of a nucleus lying in the mass
range of $100<A<200$ will release
energy when broken into two equal
fragments.
D. Fission of a nucleuw lying in the mass
range of $200<A<260$ will release energy when broken into two equal
fragments.

Answer: D

- Watch Video Solution

15. An infinitely long hollow coducting cylinder with inner radius $\frac{R}{2}$ and outer radus R carries a uniform current density along its length. The magnitude of the magnetic field $|B|$ as a function of the radial distance r from the axis is best represented by
A.

B.

C.

D.

Answer: D

(Watch Video Solution

16. Lights of two different frequencies whose photons have energies 1 and 2.5 eV , respectively, successively illuminate a metal
whose work function is 0.5 eV . The ratio of the maximum speeds of the emitted electrons
A. 1: 4
B. 1:1
C. 1:5
D. 1:2

Answer: D
(Watch Video Solution
17. If pressure at half the depth of a lake is equal to $2 / / 3$ pressure at the bottom of the lake then what is the depth of the lake?
A. 10 m
B. 20 m
C. 60 m
D. 30 m

Answer: B
18. If light travels a distance x in $t_{1} \mathrm{sec}$ in air and $10 x$ distance in $t_{2} \mathrm{sec}$ in a medium, the critical angle of the medium will be

$$
\begin{aligned}
& \text { A. } \sin ^{-}\left(\frac{20 t_{1}}{t_{2}}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{t_{1}}{t_{2}}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{t_{1}}{t_{2}}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{t_{2}}{10 t_{1}}\right)
\end{aligned}
$$

Answer: B
19. Which of the following statements is not true?
A. The
resistnace
of
intricsic
semiconductors decreases with increase
of temperature
B. Doping pure Si with trivalent impurities
give p - type semiconductors
C. The majority carriers in n - type
semiconductors are holes
D. A p - n junction can act as a

semiconductor diode

Answer: C

- Watch Video Solution

20. In electromagnetic theory, the electric and magnetic phenomena are related to each other. Therefore, the dimensions of electric and magnetic quantities must also be related to each other. In the questions below, [E] and [B]
stand for dimensions of electric and magnetic
fields respectively. While $\left[\epsilon_{0}\right]$ and $\left[\mu_{0}\right]$ stand
for dimensions of the permittivity and permeability of free space respectively. [L] and
[T] are dimensions of length and time respectively. All the quantities are given in SI units.

The relation between [E] adn $[\mathrm{B}]$ is :-

$$
\begin{aligned}
& \text { A. }[E]=[B][L][T] \\
& \text { B. }[E]=[B][L]^{-1}[T] \\
& \text { C. }[E]=[B][L][T]^{-1}
\end{aligned}
$$

$$
\text { D. }[E]=[B]=[L]^{-1}[T]^{-1}
$$

Answer: C

- Watch Video Solution

21. Moment of inertia of an equilateral triangular lamina $A B C$, about the axis passing through its centre O and perpendicular to its plane is I_{0} as shown in the figure. A cavithy DEF
is cut out from the lamina, where D, E, F are the mid points of the sides. Moment of inertia of
the remaining part of lamina about the same axis is -

22. In an ideal gas at temperature T , the average force that a molecule applies on the walls of a closed container depends on $T a s T^{q}$.

A good estimate for q is :-

D Watch Video Solution

23. In the YDSE shown below, two slits are covered with thin sheets having a thickness t and 2 t and refractive indices 2μ and μ respectively. The position of central maxima is shifted by a distance of N (in cm) from the
central position of the screen. Find the value of
N.

$$
\left[d=1 m m, D=1 m, t=2 \times 10^{-2} m m, \mu=\frac{3}{2}\right]
$$

D Watch Video Solution
24. The equation of a wave on a string of linear mass density $0.04 \mathrm{kgm}^{-1}$ is given by
$y=0.02(m) \sin \left[2 \pi\left(\frac{t}{0.04(s)}-\frac{x}{0.50(m)}\right)\right]$.
The tension in the string is :

- Watch Video Solution

25. Constant as eliptical rail $P Q$ in the varticle plain with $O P==3 m$ and $O Q=4 m$. A block of mass 1 kg is pailed along the rail from
P to Q with a force of $18 N$, which is always parallel to less $P Q$ Assuming are frictionless
losess, the kinetic energy the block when 0 reches Q is $(n \times 10)$ pales. The velie of a (Take acceleration due to gravity) $=10 \mathrm{~ms}^{-2}$)

D Watch Video Solution

