©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 80

Physics

1. A small block of mass M moves on a
frictionless surface of an inclined plane, as
shown in the figure. The angle of the incline
suddenly changes from 60° to 30° at point B.

The block is many at rest at A. Assume that collisions between the block id the incline are totally inelastic.

The speed of the block at point C, immediately before it leaves the second incline

A. $\sqrt{120} m s^{-1}$
B. $\sqrt{105} m s^{-1}$
C. $\sqrt{90} m s^{-1}$
D. $\sqrt{75} m s^{-1}$

Answer: B

D Watch Video Solution

2. A metal wire of resistance 3Ω is elongated to make a uniform wire of double its previous
length. This new wire is now bent and the ends joined to make a circle. If two points on
this circle make an angle 60° at the center, the equivalent resistance between these two points will be :

5

A. $\frac{5}{3} \Omega$
B. $\frac{12}{5} \Omega$
C. $\frac{7}{2} \Omega$
D. $\frac{5}{2} \Omega$

Answer: A

D Watch Video Solution
3. A metal sphere of radius r_{1} charges to a potential V_{1} is then placed in a thin-walled uncharged conducting spherical shell of radius r_{2}. Determine the potential acquired by the spherical shell after it has been connected for a short time to the sphere by a conductor.

A. $V_{1} \frac{a}{b}$
B. $V_{1} \frac{b}{a}$
C. $\frac{V_{1}(a+b)}{b}$
D. $\frac{V_{1} a}{a+b}$

Answer: A

D Watch Video Solution

4. A body starts from rest and moves with constant acceleration. The ratio of distance covered by the body in $n t h$ second to that covered in n second is.
A. $\frac{2}{n}-\frac{1}{n^{2}}$
B. $\frac{1}{n^{2}}-\frac{1}{n}$
C. $\frac{2}{n^{2}}-\frac{1}{n}$
D. $\frac{2}{n}+\frac{1}{n^{2}}$

Answer: A

D Watch Video Solution

5. The masses and radii of the earth an moon
are $\quad M_{1}$ and R_{1} and M_{2}, R_{2} respectively.

Their centres are at a distacne r apart. Find
the minimum speed with which the particle of mass m should be projected from a point midway between the two centres so as to escape to infinity.

$$
\begin{aligned}
& \text { A. } \frac{G\left(M_{1}+M_{2}\right)}{d} \\
& \text { B. } 2 \sqrt{\frac{G\left(M_{1}+M_{2}\right)}{d}} \\
& \text { C. } \sqrt{\frac{G d}{M_{1}+M_{2}}} \\
& \text { D. } \sqrt{\frac{M_{1}+M_{2}}{G d}}
\end{aligned}
$$

Answer: B
6. Calculate the daily loss of energy by the earth, if the temperature gradient in the earth's crust is $32^{\circ} \mathrm{C}$ per km and mean conductivity of the rock is 0.008 of CGS unit.
(Given radius of earth $=6400 \mathrm{~km}$)
A. $10^{30} \mathrm{cal}$
B. $10^{40} \mathrm{cal}$
C. $10^{20} \mathrm{cal}$
D. $10^{18} \mathrm{cal}$

Answer: D

D Watch Video Solution

7. Find the minimum attainable pressure of an
ideal gas in the process $T=T_{0}+\alpha V^{2}$,
Where T_{0} and α are positive constant and V is
the volume of one mole of gas. Draw the approximate $T-V$ plot of this process.

$$
\text { A. } 2 R \sqrt{\alpha T_{0}}
$$

B. $3 R \sqrt{\alpha T_{0}}$
C. $3 R$
D. $3 R \sqrt{\frac{\alpha T_{0}}{2}}$

Answer: A

D Watch Video Solution

8. A wire in the from of a square of side ' a ' carries a current i. Then the magnetic induction at the centre of the square wire is (Magnetic permeability of free space $=\mu_{0}$)
A. $\frac{\mu_{0} i}{2 \pi a}$
B. $\frac{\mu_{0} i \sqrt{2}}{\pi a}$
C. $\frac{2 \sqrt{2} \mu_{0} i}{\pi a}$
D. $\frac{\mu_{0} i}{\sqrt{2} \pi a}$

Answer: C

- Watch Video Solution

9. To a stationary man, rain appears to be falling at his back at an angle 30° with the vertical. As he starts moving forward with a
speed of $0.5 \mathrm{~ms}^{-1}$, he finds that the rain is
falling vertically.

The speed of rain with respect to the stationary man is.
A. $0.5 \mathrm{~m} \mathrm{~s}^{-1}$
B. $1 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\frac{\sqrt{3}}{2} \mathrm{~m} \mathrm{~s}^{-1}$
D. $\frac{1}{\sqrt{3}} m s^{-1}$

Answer: B
10. The figure shows the position - time $(x-t)$
graph of one - dimensional motion of a body of mass 0.4 kg . The magnitude of each impulse is:

A. 0.4 N s
B. 0.8 N s
C. 1.6 N s

D. 0.2 N s

Answer: B

D Watch Video Solution

11. There is a stream of neutrons with a kinetic energy of $0.0327 e V$. If the half-life of neutrons
is $700 s$, what fraction of neutrons will decay before they travel is distance of $10 m$? Given mass of neutron $=1.676 \times 10^{-27} \mathrm{~kg}$.

$$
\text { A. } 3.96 \times 10^{-6}
$$

B. 3.90×10^{-6}
C. 3.85×10^{-6}
D. 4.86×10^{-6}

Answer: A

D Watch Video Solution

12. An oil drop carrying a charge q has a mass
m kg . it is falling freely in air with terminal
speed v. the electric field required to make, the drop move upwards with the same speed is

> A. $\frac{m g}{q}$
> B. $\frac{2 m g}{q}$
> C. $\frac{m g v}{q^{2}}$
> D. $\frac{2 m g v}{q}$

Answer: B

D Watch Video Solution

13. There are two identical small holes of area
of cross section a on the opposite sides of a tank containing liquid of density ρ. The
differences in height between the holes is h.

The tank is resting on a smooth horizontal
surface. The horizontal force which will have to
be applied on the tank to keep it in equilibrium is

A. $g h \rho a$
B. $\frac{2 g h}{\rho a}$
C. $2 \rho a g h$
D. $\frac{\rho g h}{a}$

Answer: C

D Watch Video Solution

14. A convex lens of focal length 10 cm and
imag formed by it, is at least distance of distinct vision then the magnifying power is
A. 3.5
B. 2.5
C. 1.5
D. 1.4

Answer: A

- Watch Video Solution

15. A uniform disc of mass M and radius R is mounted on a fixed horizontal axis. A block of mass m hangs from a massless string that is wrapped around the rim of the disc. The
magnitude of the acceleration of the falling
block (m) is

$$
\begin{aligned}
& \text { A. } \frac{2 M}{M+2 m} g \\
& \text { B. } \frac{2 m}{M+2 m} g \\
& \text { C. } \frac{M+2 m}{2 M} g \\
& \text { D. } \frac{2 M+m}{2 M} g
\end{aligned}
$$

Answer: B
16. A charge of 8.0 mA in the emitter current
brings a charge of 7.9 mA in the collector current. The values of α and β are
A. $0.99,90$
B. $0.96,79$
C. $0.97,99$
D. $0.99,79$

Answer: D

D Watch Video Solution
17. The specific heats of argon at constant pressure and constant volume are $525 \mathrm{~J} / \mathrm{kg}$ and $315 \mathrm{~J} / \mathrm{kg}$, respectively. Its density at $N T P$ will be\
A. $0.64 \mathrm{~kg} \mathrm{~m}^{-3}$
B. $1.20 \mathrm{~kg} \mathrm{~m}^{-3}$
C. $1.75 \mathrm{~kg} \mathrm{~m}^{-3}$
D. $2.62 \mathrm{~kg} \mathrm{~m}^{-3}$

Answer: C
18. The dimensions of magnetic flux are
A. $M L^{2} T^{2} I^{-1}$
B. $M L^{-2} T^{-2} I^{-2}$
C. $M L^{2} T^{2} I^{-2}$
D. $M L^{2} T^{-2} I^{-2}$

Answer: C
19. Sound waves in the air are always longitudinal because
A. Of the inherent characteristics of sound
waves in air
B. Air does not have a modulus of rigidity
C. Air is a mixture of several gases
D. Density of air is very small

Answer: B

20. A block of mass $m=0.1 \mathrm{~kg}$ is connceted to
a spring of unknown spring constant k. It is
compressed to a distance x from its
equilibrium position and released from rest.
After approaching half the distance $\left(\frac{x}{2}\right)$ from the euilibrium position, it hits another block and comes to rest momentarily, while the other block moves with velocity $3 m s^{-1}$. The total initial energy of the spring is :
A. 0.6 J
B. 0.8 J
C. 1.5 J
D. 0.3 J

Answer: A

D Watch Video Solution

21. A hydrogen like atom (described by the Borh model) is observed to emit six wavelength, originating from all possible transitions between a group of levels. These levels have energies between -0.85 eV and -
0.544 eV (including both these values). (a)Find the atomic number of the atom.
(b) Calculate the smallest wavelength emitted in these transitions.
(Take, hc = $1240 \mathrm{eV}-\mathrm{nm}$, ground state energy of hydrogen atom $=-13.6 \mathrm{eV}$)

D Watch Video Solution

22. In the following arrangement, the system is initially at rest. The 5-kg block is now released.

Assuming the pulley and string to be massless
and smooth, the acceleration of block C will be

- Watch Video Solution

23. A non - conducting ring of mass $m=4 \mathrm{~kg}$
and radius $\mathrm{R}=10 \mathrm{~cm}$ has charge $\mathrm{Q}=2 \mathrm{C}$ uniformly distributed over its circumference.

The ring is placed on a rough horizontal surface such that the plane of the ring is parallel to the surface. A vertical magnetic field
$B=4 t^{3} T$ is switched on at $\mathrm{t}=0$. At $\mathrm{t}=5 \mathrm{~s}$
ring starts to rotate about the vertical axis
through the centre. The coefficient of friction
between the ring and the surface is found to
be $\frac{k}{24}$. Then the value of k is

D Watch Video Solution
24. Two blocks of masses $m_{1}=1 \mathrm{~kg}$ and $m_{2}=2 \mathrm{~kg}$
are connected by a spring of spring constant k
$=24 \mathrm{~N} / \mathrm{m}$ and placed on a frictionless horizontal surface. The block m_{1} is imparted an initial velocity $v_{0}=12 \mathrm{~cm} / \mathrm{s}$ to the right. The amplitude of osciallation is

- Watch Video Solution

25. Four monochromatic and coherent sources
of light emitting waves in phase at placed on y
axis at $y=0, a, 2 a$ and $3 a$. If the intensity of
wave reaching at point P far away on y axis
from each of the source is almost the same and equal to I_{0}, then the resultant intensity at

Pfor $a=\frac{\lambda}{8}$ is $n I_{0}$. The value of $[n]$ is.
Here [] is greatest integer funciton.

- Watch Video Solution

