©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 83

Physics

1. A 100 W sodium lamp radiates energy
uniformly in all directions. The lamp is located
at the centre of a large sphere that absorbs all
the sodium light which is incident on it. The wavelength of the sodium light is 589 nm .

What is the energy per photon associated with the sodium light?
A. 2.11
B. 1.22
C. 0.5
D. 3.21

Answer: A

2. A soap bubble has radius R and thickness
$d(\ll R)$ as shown. It colapses into a spherical drop. The ratio of excess pressure in the drop to the excess pressure inside the bubble is

A. $\left(\frac{R}{3 d}\right)^{\frac{1}{3}}$
B. $\left(\frac{R}{6 d}\right)^{\frac{1}{3}}$
C. $\left(\frac{R}{24 d}\right)^{\frac{1}{3}}$
D. None of these

Answer: C

D Watch Video Solution

3. A hollow cylinder has a charge $q C$ within it.

If ϕ is the electric flux in unit of voltmeter
associated with the curved surface B the flux
linked with the glance surface A in unit of
voltmeter will be

$$
\begin{aligned}
& \text { A. } \frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi\right) \\
& \text { B. } \frac{q}{2 \varepsilon_{0}} \\
& \text { C. } \frac{\phi}{3} \\
& \text { D. } \frac{q}{\varepsilon_{0}}-\phi
\end{aligned}
$$

- Watch Video Solution

4. Every atom makes one free electron in copper. If 1.1 ampere current is flowing in the wire of copper having 1 mm diameter, then the drift velocity (approx.) will be (Density of copper $=9 \times 10^{3} \mathrm{kgm}^{-3}$ and atomic weight = 63)
A. $0.1 \mathrm{~mm} \mathrm{~s}^{-1}$
B. $0.2 \mathrm{~mm} \mathrm{~s}^{-1}$
C. $0.3 \mathrm{~mm} \mathrm{~s}^{-1}$

D. $0.2 \mathrm{~mm} \mathrm{~s}^{-1}$

Answer: A

D Watch Video Solution

5. Two balls of masses 2 g and 6 g are moving
with kinetic energy in the ratio of $3: 1$. What is
the ratio of their linear momentum ?
A. $1: 1$
B. 2:1
C. $1: 2$
D. None of these

Answer: A

D Watch Video Solution

6. A cylinder of radius R made of a material of
thermal conductivity K_{1} is surrounded by a cylindrical shell of inner radius R and outer radius 2 R made of a material of thermal conductivity K_{2}. The two ends of the
combined system are maintained at two
different temperatures. There is no loss of
heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is
(a) $K_{1}+K_{2}$ (b) $K_{1} K_{2} /\left(K_{1}+K_{2}\right)$
(c) $\left(K_{1}+3 K_{2}\right) / 4$
(d) $\left(3 K_{1}+K_{2}\right) / 4$.
A. $\frac{K_{1} K_{2}}{K_{1}+K_{2}}$
B. $K_{1}+K_{2}$
C. $\frac{K_{1}+3 K_{2}}{4}$
D. $\frac{3 K_{1}+K_{2}}{4}$

Answer: C

D Watch Video Solution

7. The density of a substance at $0^{\circ} \mathrm{C}$ is $10 \mathrm{~g} / \mathrm{cc}$ and at $100^{\circ} C$, its density is $9.7 \mathrm{~g} / \mathrm{cc}$. The coefficient of linear expansion of the substance is

$$
\text { A. } 10^{-4} \cdot{ }^{\circ} C^{-1}
$$

B. $10^{-2} .{ }^{\circ} C^{-1}$
C. $10^{-3} \cdot{ }^{\circ} C^{-1}$
D. $10^{2} .{ }^{\circ} C^{-1}$

Answer: A

- Watch Video Solution

8. In a resonance column first and second resonance
are obtained at depths 22.7 cm and 70.2 cm .

The
third resonance will be obtained at a depth of
A. 117.7 cm
B. 92.9 cm
C. 115.5 cm
D. 113.5 cm

Answer: A

D Watch Video Solution
9. In YDSE and apparatus as shown in figure wavelength of light used in λ. The screen is moved away from the source with a constant speed V. Initial distance between screen and plane of slits was D. Suppose P is the point where $5^{\text {th }}$ order maxima was lying at $t=0$,
then after how much time third - order
maxima will lie at this point P on that screen?

A. $\frac{2 D}{V}$
B. $\frac{2 D}{3 V}$
c. $\frac{3 D}{2 V}$
D. $\frac{3 D}{V}$
10. A rod $A B$ of length L and mass M is free to move on a frictionless horizontal surface. It is moving with a velocity v , as shown in figure.

End B of $\operatorname{rod} A B$ strikes the end of the wall.
Assuming elastic impact, the angular velocity of the rod $A B$, just after impact, is

A. $\frac{v}{2 L}$
B. $\frac{3 v}{L}$
C. $\frac{3 v}{2 L}$
D. $\frac{v}{L}$

Answer: B

D View Text Solution

11. A body starts from rest and is uniformly accelerated for 30 s . The distance travelled in
the first 10 s is x_{1}, next 10 s is x_{2} and the last

10 s is x_{3}. Then $x_{1}: x_{2}: x_{3}$ is the same as :-
A. $1: 2: 3$
B. 1:2:5
C. $1: 3: 5$
D. $1: 3: 9$

Answer: C
(Watch Video Solution
12. In a transformer the number of primary
turns is four times that of the secondary
turns. Its primary is connected to an AC source of voltage V . Then
A. current through its secondary is about
four times that of the current through
its primary.
B. voltage across its secondary is about
four times that of the voltage across its
primary.
C. voltage across its secondary is about two times that of the voltage across the
primary.
D. voltage across its secondary is about $\frac{1}{2 \sqrt{2}}$ times of the voltage across its primary.

Answer: A

D Watch Video Solution
13. If the earth be one-half of its present
distance from the sun, how many days will be in one year?
A. 183
B. 730
C. 129
D. 365

Answer: C

D Watch Video Solution
14. One plano -convex and one plano-concave lens of same radius of curvature R but of different materials are joined side by side as shown in the figure. If the refractive index of the meterial of 1 is μ_{1} and that of 2 is μ_{2}, then the focal length of the combination is:

> A. $\frac{R}{2-\left(\mu_{1}-\mu_{2}\right)}$
> B. $\frac{R}{2\left(\mu_{1}-\mu_{2}\right)}$
> C. $\frac{2 R}{\mu_{1}-\mu_{2}}$
> D. $\frac{R}{\mu_{1}-\mu_{2}}$

Answer: D

D Watch Video Solution

15. Which two of the following five physical parameters have the same dimension?
(1) Energy density
(2) refractive index
(3) dielectric constant
(4) Young's modulus
(5) magnitic field
A. (B) and (D)
B. (C) and (E)
C. (A) and (D)
D. (A) and (E)

Answer: C
16. A ball whose kinetic energy is E, is projected at an angle of $45(\circ)$ to the horizontal . The kinetic energy of the ball at the highest point of its flight will be
A. E
B. $\frac{E}{2}$
C. $\frac{E}{\sqrt{2}}$
D. 0
17. A potential difference of 20 kV is applied across an X-ray tube. The minimum
wavelength of X-rays generated (in angstrom)
is :-
A. $0.84 \AA$
B. $0.31 \AA$
C. $0.62 \AA$
D. $0.96 \AA$

Answer: C

D Watch Video Solution

18. Define the activity of a radio nuclide. Write
its S.I. unit. Give a plot of the activity of a radioactive species versus time.

How long will a radioactive isotope, whose half
life is T years, take for its activity to reduce to
$1 / 8$ th of its initial value?
A. T
B. $T / 2$
C. $T / 3$
D. 3 T

Answer: D

D Watch Video Solution

19. Find the magnetic induction at point O, if
the current carrying wire is in the shape
shown in the figure.

A. $\frac{\mu_{0} l}{5 \pi r}\left[\frac{3 \pi}{2}+1\right]$
B. $\frac{\mu_{0} l}{3 \pi r}\left[\frac{3 \pi}{4}+1\right]$
\odot
C. $\frac{\mu_{0} l}{2 \pi r}\left[\frac{3 \pi}{4}+1\right]$
\odot
D. $\frac{\mu_{0} l}{4 \pi r}\left[\frac{3 \pi}{2}+1\right]$
\odot

Answer: D

D Watch Video Solution

20. The frequency of a sonometer wire is f.

When the weight producting the tensions are
completely. Immersed in water the frequency
becomes $f / 2$ and on immersing the weight in
acertain liquid the fequency becomes $f / 3$. The
specific gravity of the liquid is
A. $\frac{4}{3}$
B. $\frac{16}{9}$
C. $\frac{15}{12}$
D. $\frac{32}{27}$

Answer: D

- Watch Video Solution

21. A ring of mass $(2 \pi) \mathrm{kg}$ and of radius 0.25 m
is making 300 rpm about an axis through its
perpendicular to its plane. The tension in newton developed in ring is approximately
22. Block B starts from rest and accelerates as
$a_{B}=12 t m s^{-2}$. Simultaneously another end of the string is pulled with constant acceleration a_{0}. If at $\mathrm{t}=3 \mathrm{~s}$, block A block A comes to rest than then the value of $a_{0}\left(\right.$ in $\left.m s^{-2}\right)$ is equal to $\xrightarrow[A D C D]{a_{\Delta}=122 \mathrm{~m} / \mathrm{s}^{3}}$
23. If the displacement (x) and velocity (v) of a particle executing SHM are related through the expression $3 v^{2}=30-x^{2}$. If the time period of the particle is $T=\pi \sqrt{n}$, then what is the value of n ?

Watch Video Solution

24. A carnot engine has efficiency $1 / 5$.

Efficiency becomes $1 / 3$ when temperature of
sink is decreased by 50 K What is the temperature of sink ?

D Watch Video Solution

25. In optical communication system operating at 1200 nm , only 2% of the source frequency is available for TV t ransmission having a bandwidth of 5 MHz . the number of TV channels that can be transmitted is
