©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 85

Physics

1. Derive an expression for the magnetic field
at the site of the nucleus in a hydrogen atom
due to the circular motion of the electron

Assume that the atom is in its ground state and the answer in terms of fundamental constants
A. $\frac{\mu_{0} e^{7} \pi m^{2}}{8 \varepsilon_{0}^{3} h^{5}}$
B. $\frac{\mu_{0} e^{5} \pi m^{2}}{8 \varepsilon_{0}^{3} h^{5}}$
C. $\frac{\mu_{0} e^{5} \pi m^{2}}{8 \varepsilon_{0}^{3} h^{4}}$
D. $\frac{\mu_{0} e^{7} \pi m^{2}}{8 \varepsilon_{0}^{3} h^{4}}$

Answer: A

D Watch Video Solution

2. Particles of masses $m, 2 m, 3 m$... nm gram are placed on the same line at distance 1,21 , $31, \ldots, \mathrm{nl} \mathrm{cm}$ from a fixed point. The distance of centre of mass of the particles from the fixed point in cm is

$$
\begin{aligned}
& \text { A. } \frac{(2 n+1) L}{4} \\
& \text { B. } \frac{L}{(2 n+1)} \\
& \text { C. } \frac{n\left(n^{2}+1\right) L}{2} \\
& \text { D. } \frac{(2 n+1) L}{3}
\end{aligned}
$$

- Watch Video Solution

3. $A B$ is a light rigid rod. Which is rotating about a vertical axis passing through A, A spring of force constant K and natural length
l is attached at A and its other end is attached to a small bead of mass m. The bead
can slide without friction on the rod. At the initial moment the bead is at rest (w.rt. the rod) and the spring is unstreached Select

correct option

V. $\omega=$ constant I $\mathrm{K}, l \mathrm{~m}$ smooth
A B
|

Bead

A. $V_{\max }=\sqrt{\frac{m \omega^{2} l^{2}}{k-m \omega^{2}}}$
B. $V_{\max }=\sqrt{\frac{m \omega^{4} l^{2}}{k-m \omega^{2}}}$
C. $V_{\max }=\sqrt{\frac{m \omega^{4} l^{2}}{m \omega^{2}-k}}$
D. $V_{\max }=\sqrt{\frac{m \omega^{2} l^{2}}{m \omega^{2}-k}}$

- Watch Video Solution

4. In the circuit shown in the figure (A), R_{3} is a variable resistance

As the value R_{3} is changed, current I though the cell varies as shown. Obvioulsy, the variation is asymptotic, i.e. $I \rightarrow 6 A$ as
$R_{3} \rightarrow \infty . \quad$ Resistance $\quad R_{1}$ and $R_{2} \quad$ are, respectively
A. $4 \Omega, 2 \Omega$
B. $2 \Omega, 4 \Omega$
C. $2 \Omega, 2 \Omega$
D. $1 \Omega, 4 \Omega$

Answer: C

- Watch Video Solution

5. In a uniform magneitc field of induced B a

wire in the form of a semicircle of radius r rotates about the diameter of hte circle with an angular frequency ω. The axis of rotation is perpendicular to hte field. If the total resistance of hte circuit is R, the mean power generated per period of rotation is

$$
\begin{aligned}
& \text { A. } \frac{B \pi r^{2} \omega}{2 R} \\
& \text { B. } \frac{\left(B \pi r^{2} \omega\right)^{2}}{5 R t} \\
& \text { C. } \frac{(B \pi r \omega)^{2}}{2 R}
\end{aligned}
$$

D. $\frac{\left(B \pi r \omega^{2}\right)^{2}}{8 R}$

Answer: D

D Watch Video Solution

6. An insulating solid sphere of the radius R is
charged in a non - uniform manner such that
the volume charge density $\rho=\frac{A}{r}$, where A is
a positive constant and r is the distance from
the centre. The potential difference between
the centre and surface of the sphere is
$A R$
A. $\frac{A R}{8 \varepsilon_{0}}$
B. $\frac{A R}{4 \varepsilon_{0}}$
C. $\frac{A R}{\varepsilon_{0}}$
D. $\frac{A R}{2 \varepsilon_{0}}$

Answer: D

- Watch Video Solution

7. Assuming the Sun to be a spherical body of radius R at a temperature of $T K$, evaluate the total radiant powered incident of Earth at a

distance r from the sun

where r_{0} is the radius of the Earth and σ is

Stefan's constant.
A. $4 \pi r_{0}^{2} R^{2} \sigma T^{4} / r^{2}$
B. $\pi r_{0}^{2} R^{2} \sigma T^{4} / 4 \pi r^{2}$
C. $r_{0}^{2 R^{2} \sigma T^{4} / 4 \pi r^{2}}$
D. $R^{2} \sigma T^{4} / r^{2}$

Answer: B

D Watch Video Solution
8. In a given process on an ideal gas, $d W=0$ and $d Q<0$. Then for the gas
A. The temperature will decrease
B. The volume will increase
C. The pressure will remain contain
D. The temperature will increase

Answer: A

D Watch Video Solution
9. A horizontal metallic rod of mass ' m ' and
length 'l' is supported by two vertical identical
springs of spring constant ' k ' each and natral
length l_{0} A current ' I ' is flowing in the rod in
the direction shown if the rod is in equilibrium
then the length of each spring in this state is:

A. $l_{0}+\frac{i l B-m g}{K}$
B. $l_{0}+\frac{i l B-m g}{2 K}$
C. $l_{0}+\frac{m g-i l B}{2 K}$
D. $l_{0}=\frac{m g-i l B}{K}$

Answer: B

- Watch Video Solution

10. A large , heavy box is sliding without friction down a smooth plane of inclination θ.

From a point P on the bottom of the box, a particle is projected inside the box. The initial
speed of the particle with respect to the box is
u, and the direction of projection makes an
angle α with the bottom as shown in Figure .
(a) Find the distance along the bottom of the
box between the point of projection p and the
point Q where the particle lands. (Assume
that the particle does not hit any other surface of the box. Neglect air resistance .)
(b) If the horizontal displacement of the particle as seen by an observer on the ground
is zero, find the speed of the box with respect to the ground at the instant when particle was
projected.

A. $\frac{u^{2} \sin 2 \alpha}{g}$
B. $\frac{u \sin 2 \alpha}{g \cos \theta}$
C. $\frac{u^{2} \sin \alpha}{g}$
D. $\frac{u^{2} \sin 2 \alpha}{g \cos \theta}$

Answer: D

- Watch Video Solution

11. The friction coefficient between the board and the floor shown in figure is μ Find the maximum force that the man can exert on the rope so that the board does not slip on the
floor

A. $\frac{\mu(m+M) g}{(2+\mu)}$
B. $\frac{\mu(m+M) g}{(1+\mu)}$
c. $\frac{\mu(m+M) g}{(2-\mu)}$
D. $\frac{\mu(m+M) g}{(1-\mu)}$

Answer: B

- Watch Video Solution

12. A particle at the end of a spring executes
simple harmonic motion with a period t_{1} while
the corresponding period for another spring is t_{2} if the oscillation with the two springs in series is T then

$$
\begin{aligned}
& \text { А. } T=t_{1}+t_{2} \\
& \text { B. } T^{2}=t_{1}^{2}+t_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } T^{-1}=t_{1}^{-1}+t_{2}^{-1} \\
& \text { D. } T^{-2}=t_{1}^{-2}+t_{2}^{-2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

13. A photocell is illuminated by a small bright source places 1 m away when the same source
of light is placed $\frac{1}{2} \mathrm{~m}$ away. The number of electron emitted by photocathode would be
A. decrease by a factor of 2
B. increase by a factor of 2
C. decrease by a factor of 4
D. increase by a factor of 4

Answer: D

D Watch Video Solution

14. A beam of light consisting of red, green and blue colours is incident on a right angled prism. The refractive index of the material of
the prism for the above red, green and blue wavelengths are 1.39, 1.44 and 1.47, respectively.

A. Separate all the three colours from one another
B. Not separate the three colours at all
C. Separate the red colour part from the green and blue colours
D. Separate the blue colour part from the red and green colours

Answer: C

D Watch Video Solution

15. A uniform rod of mass m and length L is hinged at one end and free to rotate in the horizontal plane. All the surface are smooth. A
particle of same mass m collides with the rod
with a speed V_{0}. The coefficient of restitution
for the collision is $e=\frac{1}{2}$. If hinge reaction during the collision is zero then the value of x is :

A. No such value of x is possible
B. $x=\frac{L}{2}$
C. $x=\frac{2 L}{3}$
D. $x=L$

Answer: C

D View Text Solution

16. A particular semiconductor in equilibrium
has $1 \times 10^{16} \mathrm{~cm}^{-3}$ donor atoms,
$1.1 \times 10^{17} \mathrm{~cm}^{-3}$ acceptor atoms. If the
intrinsic carrier density $\left(n_{i}\right)$ of the
semiconductor is $10^{12} \mathrm{~cm}^{-3}$, then the electron density in it will be
A. $10^{16} \mathrm{~cm}^{-3}$
B. $10^{12} \mathrm{~cm}^{-3}$
C. $1.1 \times 10^{17} \mathrm{~cm}^{-3}$
D. $10^{7} \mathrm{~cm}^{-3}$

Answer: D
(Watch Video Solution
17. The speed (v) of ripples on the surface of waterdepends on surface tension (σ), density
(ρ) and wavelength (λ). The square of speed
(v) is proportional to

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{\gamma}{\rho}} \\
& \text { B. } \sqrt{\frac{\gamma}{\rho \lambda}} \\
& \text { C. }\left(\frac{\gamma}{\rho \lambda}\right)^{\frac{1}{3}} \\
& \text { D. } \frac{\gamma}{\rho \lambda}
\end{aligned}
$$

Answer: B
18. The ratio of intensities of consecutive
maxima in the diffraction pattern due to a single slit is
A. $1: 2: 3$
B. 1:4:9
C. $1: \frac{2}{\pi^{2}}: \frac{3}{\pi^{2}}$
D. $1: \frac{4}{9 \pi^{2}}: \frac{4}{25 \pi^{2}}$

Answer: D

Watch Video Solution

19. A string of length 1.5 m with its two ends clamped is vibrating in fundamental mode.

Amplitude at the centre of the string is 4 mm .
Minimum distance between the two points having amplitude 2 mm is:
A. 1 m
B. 75 m
C. 60 m
D. 50 m

Answer: A

- Watch Video Solution

20. The potential energy of a 1 kg particle free to move along the x - axis is given by
$V(x)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right) J$
The total mechainical energy of the particle is
$2 J$. Then , the maximum speed (in $\mathrm{m} / / \mathrm{s}$) is
A. 2
B. $3 / \sqrt{2}$
C. $\sqrt{2}$

D. $1 / \sqrt{2}$

Answer: B

D Watch Video Solution

21. The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is

150 ms . The magnet is cut along its length into
three equal parts and three parts are then
placed on each other with their like poles toghether. The time period of this combination (in ms) will be

D Watch Video Solution

22. A statellite is launched into a circular orbit,

R $\frac{R}{4}$ above the surface of the earth. The time period of revolution is $T=2 \pi(n)^{3 / 2} \sqrt{\frac{R}{g}}$.

Where R is the radius of the earth and g is the
acceleration due to gravity. Then what is the value on n ?

- Watch Video Solution

23. To determine the half life of a radioactive element, a student plote a graph of in $\left|\frac{d N(t)}{d t}\right|$ versust, Here $\left|\frac{d N(t)}{d t}\right|$ is the rate of
radioatuion decay at time t, if the number of radoactive nuclei of this element decreases by
a factor of p after 4.16 year the value of p is

- Watch Video Solution

24. A wide cylindrical vessel 50 cm in height is
filled with water and rests on a table.

Assuming the viscosity to be negligible, find at what height from the bottom of the vessel a
small hole should be perforated for the water jet coming out of it to hit the surface of the table at the maximum distance $l_{\max }$ from the vessel. Find $l_{\text {max }}$.

- Watch Video Solution

25. A wire is made by attaching two segments
together end to end. One segment is made of aluminium and the other is steel. The effective coefficient of linear expansion of the two segment wire is $19 \times 10^{-6} /{ }^{\circ} \mathrm{C}$. The fraction
length of aluminium is (linear coefficient of thermal expansion of aluminium and steel are $23 \times 10^{-6} .{ }^{\circ} C$ and $12 \times 10^{-6} /{ }^{\circ} C$,
