©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 87

Physics

1. A T.V. tower has a height of 100 m . How much
population is covered by T.V. broadcast, if the
population density around the tower is $1000 / \mathrm{km}^{2}$?
A. 39.5×10^{5} units
B. 19.5×10^{5} units
C. 29.5×10^{5} units
D. 9.4×10^{5} units

Answer: A

D Watch Video Solution
2. A highly rigid cubical block (A) of small mass
(M) and slide (L) is fixed rigidly on to another
cubical block (B) of the same dimesions and of low modulus of rigidity (eta) such that the lower face of (A) completely covers the upper
face of (B). The lower face of (B) is rigidly held on a horizontal surface. (A) small force (F) is applied perpendicular to one of the sides
faces of (A). After the force is withdrawn, block
(A) executes small oscillations the time period of which is given by.
A. $2 \pi \sqrt{M \eta L}$
B. $2 \pi \sqrt{\frac{M \eta}{L}}$
C. $2 \pi \sqrt{\frac{M L}{\eta}}$
D. $2 \pi \sqrt{\frac{M}{\eta L}}$

Answer: D

D Watch Video Solution

3. Two blocks A and B of masses m and $2 m$ respectively, attached at opposite ends of a
spring of constant K , placed on a smooth horizontal surface. Spring is initially at its natural length I . A is given a velocity $2 V_{0}$ and B given velocity V_{0} as shown.

Maximum separation between m and centre of mass of the system will be :
A. $\frac{l}{3}+\sqrt{\frac{8 m V_{0}^{2}}{3 K}}$
B. $\frac{l}{3}+\sqrt{\frac{2 m V_{0}^{2}}{3 K}}$
C. $\frac{2 l}{3}+\sqrt{\frac{2 m V_{0}^{2}}{3 K}}$
D. $\frac{2 l}{3}+\sqrt{\frac{8 m V_{0}^{2}}{3 K}}$

Answer: D

D Watch Video Solution

4. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increase as V^{q}, where V is the volume of the gas. The value of
q is : $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$
A. $\frac{\gamma-1}{2}$
B. $\frac{3 \gamma+1}{6}$
C. $\frac{3 \gamma-5}{6}$
D. $\frac{\gamma+1}{2}$

Answer: D

D Watch Video Solution

5. When the temperature of a black body increases, it is observed that the wavelength corresponding to maximum energy changes
from $0.26 \mu m$ to $0.13 \mu m$. The ratio of the emissive powers of the body at the respective temperatures is

$$
\begin{aligned}
& \text { A. } \frac{16}{1} \\
& \text { B. } \frac{4}{1} \\
& \text { C. } \frac{1}{4} \\
& \text { D. } \frac{1}{16}
\end{aligned}
$$

Answer: D

D Watch Video Solution
6. A radioactive material decays by
simulataneous emission of two particle from
the with respective half - lives 1620 and 810
year. The time, in year, after which one fourth of the material remains is
A. 4860 yr
B. 3240 yr
C. 2340 yr
D. 1080 yr

Watch Video Solution

7. A voltmeter of variable ranges $3 \mathrm{~V}, 15 \mathrm{~V}, 150 \mathrm{~V}$ is to designed by connecting resistances
R_{1}, R_{2}, R_{3} in series with a galvanometer of resistance $G=20 \Omega$, as shown in the figure.

The galvanometer gives full pass through its coil. Then, the resistances R_{1}, R_{2} and R_{3} (in kilo ohms) should be, respectively

A. $3,12,135$
B. $2.98,12,135$
C. $2.98,14.98,149.98$
D. $3.86,12.55,122.97$

Answer: B

D Watch Video Solution

8. If two lenses of +5 dioptres are mounted at some distance apart, the equivalent power will always be negative if the distance is
A. Greater than 40 cm
B. Equal to 10 cm
C. Greater than 80 cm
D. Less than 10 cm

Answer: A

D Watch Video Solution
9. Find the ratio of energies of photons produced due to transition of electron of hydrogen atom form its (i) second permitted
energy level to the first level (ii) highest permitted energy level to the first permitted level.
A. $3: 2$
B. $2: 3$
C. 1: 4
D. $3: 4$

Answer: D

D Watch Video Solution
10. A block of mass m is kept on an inclined
plane of a lift moving down with accelration of
$2 m / s^{2}$.what should be the coefficient of
friction for the block to move down with constant velocity relative relative to lift?

$$
\text { A. } \mu=\frac{1}{\sqrt{3}}
$$

B. $\mu=0.4$
C. $\mu=0.8$
D. $\mu=0.5$

Answer: A

D Watch Video Solution

11. A parallel plate capacitor of area A, plate separation d and capacitance C is filled with three different dielectric materials having dielectric constants k_{1}, k_{2} and k_{3} as shown. If
a isngle dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by

A. $k=k_{1}+k_{2}+2 k_{3}$
B. $k=\frac{k_{1} k_{2}}{k_{1}+k_{2}}+2 k_{3}$
C. $\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{2 k_{3}}$
D. $\frac{1}{k}=\frac{1}{k_{1}+k_{2}}+\frac{1}{2 k_{3}}$

Answer: D

D Watch Video Solution

12. In a conical pendulum arrangement, a string of length 1 m is fixed at one end with a bob of mass 100 g and the string makes

2 $\frac{2}{\pi} m v s^{-1}$ around a vertical axis through a
fixed point. The angle of inclination of the string with vertical is: (Take $g=10 m s^{-1}$)
A. $\tan ^{-1}(5 / 8)$
B. $\tan ^{-1}(3 / 5)$
C. $\cos ^{-1}(8 / 5)$
D. $\cos ^{-1}(5 / 8)$

Answer: D

- Watch Video Solution

13. Let M be the mass and L be the length of a
thin uniform rod. In first case, axis of rotation
is passing through centre and perpendicular to the length of the rod. In second case, axis of
rotation is passing through one end and perpendicular to the length of the rod. The ratio of radius of gyration in first case to second case is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer: B
14. A red bulb and violet bulb of equal power emits n_{R} and n_{v} number of photons in a given time, then
A. $n_{R}=n_{V}$
B. $n_{R}>n_{V}$
C. $n_{R}<n_{V}$
D. $n_{R} \leq n_{V}$

Answer: B

D Watch Video Solution
15. A body is thrown from the surface of the earth with velocity $\mathrm{u} \mathrm{m} / \mathrm{s}$. The maximum height in metre above the surface of the earth upto which it will reac is (where, $R=$ radish of earth, $\mathrm{g}=$ acceleration due to gravity)
A. $\frac{u^{2} R}{2 g R-u^{2}}$
B. $\frac{2 u^{2} R}{g R-u^{2}}$
C. $\frac{u^{2} R^{2}}{2 g R^{2}-u^{2}}$
D. $\frac{u^{2} R}{g R-u^{2}}$

Answer: A

D Watch Video Solution

16. A cyclist is moving with a constant acceleration of $1.2 \mathrm{~m} / \mathrm{s} 2$ on a straight track. A
racer is moving on a circular path of radius 150 m at constant speed of $15 \mathrm{~m} / \mathrm{s}$. Find the magnitude of velocity of racer which is measured by the cyclist has reached a speed of $20 \mathrm{~m} / \mathrm{s}$ for the position represented in the
figure -

A. $18.03 m s^{-1}$
B. $25 m s^{-1}$
C. $20 m s^{-1}$
D. $15 m s^{-1}$

Answer: A

D Watch Video Solution
17. If the earth shrinks such that its density becomes 8 times to the present values, then new duration of the day in hours will be
A. 24
B. 12
C. 6
D. 3

Answer: C

D Watch Video Solution
18. Water from a tap emerges vertically downwards with an initial velocity V_{0}. Assume pressure is constant throughout the stream of water and the flow is steady. Find the distance
form the tap at which cross-sectional area of
stream is half of the cross-sectional area of stream at the tap.

$$
\begin{aligned}
& \text { A. } \frac{V_{0}^{2}}{2 g} \\
& \text { B. } \frac{3 V_{0}^{2}}{2 g} \\
& \text { C. } \frac{2 V_{0}^{2}}{g}
\end{aligned}
$$

D. $\frac{5 V_{0}^{2}}{2 g}$

Answer: B

D Watch Video Solution

19. An $80 \mu C$ charge is given to the $4 \mu F$ capacitor in the circuit shown in the figure so
that the upper plate A is positively charged. An
unknown resistance R is connected in the left
limb. As soon as the switch S in the central
limb is closed, a current of 2 A flows through
the 2Ω resistor in the central limb. The capacitive time constant for the circuit is

A. $56 \mu s$
B. $8 \mu s$
C. $200 \mu s$
D. $40 \mu s$

- Watch Video Solution

20. A proton moves with a speed of $5.0 \times 10^{6} \mathrm{~ms}^{-1}$ along the x -axis.It enters a
region where there is a magnetic field of magnitude 2.0 tesla directed at an angle of 30° to the x -axis and lying in the xy plane. The magnitude of the magnetic force on the proton is

$$
\text { A. } 0.8 \times 10^{-13} N
$$

$$
\text { B. } 1.6 \times 10^{-13} N
$$

C. $8.0 \times 10^{-13} N$
D. $16.0 \times 10^{-13} N$

Answer: C

D Watch Video Solution

21. Initially, a beaker has 100 g of water at temperature $90^{\circ} \mathrm{C}$. Later another 600 g of water at temperature $20^{\circ} \mathrm{C}$ was poured into the beaker. The temperature, T of the water (in.${ }^{\circ} C$) after mixing is

- Watch Video Solution

22. Let $x=\left[\frac{a^{2} b^{2}}{c}\right]$ be the physical quantity. If the percentage error in the measurement of physical quantities a, b, and c is 2,3 and 4 per cent respectively, then percentage error in the measurement of x is

- Watch Video Solution

23. Light of wavelength 600 nm is incident normally on a slit of width 0.2 mm . The angular width of central maxima in the diffraction pattern is

D Watch Video Solution

24. A stationary source is emitting sound at a
fixed frequency f_{0}, which is reflected by two
cars approaching the source. The difference between the frequencies of sound reflected
from the cars is 1.2% of f_{0}. What is the difference in the speeds of the cars (in km per hour) to the nearest integer ? The cars are moving at constant speeds much smaller than the speed of sound which is $330 \mathrm{~ms}^{-1}$.

D Watch Video Solution

25. Power applied to a particle varices with
time as $P=\left(3 t^{2}-2 t+1\right)$ watt, where t is in second. Find the change in its kinetic energy between time $t=2 s$ and $t=4 s$.
