©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 90

Physics

1. One end of thermally insulated rod is kept at
a temperature T_{1} and the other at T_{2}. The rod
is composed of two section of length l_{1} and l_{2}
thermal conductivities k_{1} and k_{2} respectively.

The temerature at the interface of two section
is

$$
\begin{aligned}
& \text { A. } \frac{\left(k_{1} l_{1} T_{1}+K_{2} l_{2} T_{2}\right)}{\left(K_{1} l_{1}+K_{2} l_{2}\right)} \\
& \text { B. } \frac{\left(K_{2} l_{2} T_{1}+K_{1} l_{1} T_{2}\right)}{\left(K_{1} l_{1}+K_{2} l_{2}\right)} \\
& \text { C. } \frac{\left(K_{2} l_{1} T_{1}+K_{1} l_{2} T_{2}\right)}{\left(K_{2} l_{2}+K_{1} l_{2}\right)} \\
& \text { D. } \frac{\left(K_{1} l_{2} T_{1}+K_{2} l_{2} T_{2}\right)}{\left(K_{1} l_{2}+K_{2} l_{1}\right)}
\end{aligned}
$$

Answer: D

- Watch Video Solution

2. Three infinitely long charge sheets are placed as shown in figure. The electric field at point P is

A. $\frac{2 \sigma}{\varepsilon_{0}} \hat{k}$
B. $-\frac{2 \sigma}{\varepsilon_{0}} \hat{k}$
C. $\frac{4 \sigma}{\varepsilon_{0}} \hat{k}$
D. $-\frac{4 \sigma}{\varepsilon_{0}} \hat{k}$

Answer: B

- Watch Video Solution

3. If lambda is the wavelength of hydrogen
atom from the transition $n=3 \rightarrow n=1$
,then what is the wavelength for doubly ionised lithium ion for same transition?
A. $\frac{\lambda}{3}$
B. 3λ
C. $\frac{\lambda}{9}$

D. 9λ

Answer: C

D Watch Video Solution

4. A radioactive sample S_{1} having the activity
A_{1} has twice the number of nucleic as another
sample S_{2} of activity A_{2}. If $A_{2}=2 A_{1}$, then the ratio of half-life of S_{1} to the half-life of S_{2} is
A. 4
B. 2
C. 0.25
D. 0.75

Answer: A

D Watch Video Solution

5. The sun subtends an angle half a degree at
the pole of a concave mirror which has a radius of curvature of 15 m . Then the size
(diameter) of the image of sun formed by the convace mirror is
A. 8.55 cm
B. 7.55 cm
C. 6.55 cm
D. 5.55 cm

Answer: C

- Watch Video Solution

6. Calculate the rate of flow of glycerin of density $1.25 \times 10^{3} \mathrm{kgm}^{-3}$ through the conical section of a pipe, if the radii of its ends are 0.1 m and 0.04 m and the pressure drop across its length is $10 \mathrm{Nm}^{-2}$.

$$
\begin{aligned}
& \text { A. } 6.4 \times 10^{-2} \mathrm{~m}^{2} \mathrm{~s}^{-1} \\
& \text { B. } 6.4 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1} \\
& \text { C. } 12.8 \times 10^{-2} \mathrm{~m}^{3} \mathrm{~s}^{-1} \\
& \text { D. } 12.8 \times 10^{3} \mathrm{~m}^{3} \mathrm{~s}^{-1}
\end{aligned}
$$

- Watch Video Solution

7. When radiation is incident on a photoelectron emitter, the stopping potential is found to be 9 V . If e / m for the electron is $1.8 \times 10^{11} \mathrm{C} / \mathrm{kg}$, the maximum velocity of the ejected electron is
A. $6 \times 10^{5} m s^{-1}$
B. $8 \times 10^{5} m s^{-1}$
C. $1.8 \times 10^{6} m s^{-1}$
D. $1.8 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: C

- Watch Video Solution

8.

One-fourth length of a uniform rod of mass m
and length l is placed on a rough horizontal
surface and it is held stationary in horizontal
position by means of a light thread as shown in the figure. The thread is then burnt and the rod start rotating about the edge. Find the angle between the rod and the horizontal when it is about to slide on the edge. The coefficient of friction between the rod and surface is μ.
A. 13
B. 11
C. 9
D. 7

Answer: A

D Watch Video Solution

9. The potential energy of a particle varies with distance x from a fixed origin as $U=\frac{A \sqrt{x}}{x^{2}+B}$, where A and B are dimensional constants, then find the dimensional formula for $A B$.

$$
\text { A. }\left[M L^{\frac{5}{2}} T^{-2}\right]
$$

B. $\left[M^{1} L^{2} T^{-2}\right]$
C. $\left[M^{\frac{3}{2}} L^{\frac{5}{2}} T^{-2}\right]$
D. $\left[M^{1} L^{\frac{7}{2}} T^{-2}\right]$

Answer: D

D Watch Video Solution

10. Two masses m and $M(>m)$ are joined by
a light string passing over a smooth light pulley. The centre of mass of the system moves
with an acceleration

A. $g\left(\frac{M-m}{M+m}\right)$ downward
B. $g\left(\frac{M-m}{M+m}\right)^{2}$ downward
C. $g\left(\frac{M-m}{M+m}\right)^{2} \quad$ upward if $M<m$
D. zero

Answer: B

D Watch Video Solution

11. A block of mass m is pulled by a uniform chain of mass m tied to it by applying a force F at the other end of the chain.The tension at a point P which is at a distance of quarter of
the length of the chain from the free end, will
be

A. $\frac{3 F}{4}$
B. $\frac{7 F}{8 m}$
C. $\frac{6 F}{7}$
D. $\frac{4 F}{5}$

Answer: B
12. A ferromagnetic material is heated above
its curie temperature. Which one is a correct statement?
A. Ferromagnetic domains are perfectly arranged
B. Ferromagnetic domains become random
C. Ferromagnetic domains are not influenced

D. Ferromagnetic material changes into

 diamagnetic material
Answer: B

- Watch Video Solution

13. Sensitivity of moving coil galvanometer is
's'. If a shunt of $\left(\frac{1}{8}\right)^{t h}$ of the resistance of galvanometer is connected to moving coil galvanometer, its sensitivity becomes
A. $\frac{s}{3}$
B. $\frac{s}{6}$
C. $\frac{s}{9}$
D. $\frac{s}{12}$

Answer: C

- Watch Video Solution

14. A ceiling fan rotates about its own axis with some angular velocity. When the fan is switched off, the angular velocity becomes
$\left(\frac{1}{4}\right)$ th of the original in time ' t ' and ' n ' revolutions are made in that time. The number of revolutions made by the fan during the time interval between switch of and rest are (Angular retardation is uniform)

$$
\begin{aligned}
& \text { A. } \frac{4 n}{15} \\
& \text { B. } \frac{8 n}{15} \\
& \text { C. } \frac{16 n}{15} \\
& \text { D. } \frac{32 n}{15}
\end{aligned}
$$

Answer: C
15. A ball is thrown from the ground to clear a wall 3 m high at a distance of 6 m and falls 18 m away from the wall the angle of projection of ball is :-

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{3}{2}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{2}{3}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{1}{2}\right) \\
& \text { D. } \tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Answer: B

- Watch Video Solution

16. The potential energy of a 1 kg particle free
to move along the x-axis is given by
$V(x)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right) J$ The total mechanical
energy of the particle is 2 J then the maximum
speed (in m / s) is

$$
\begin{aligned}
& \text { A. } \frac{4}{\sqrt{2}} \\
& \text { B. } \frac{1}{\sqrt{2}}
\end{aligned}
$$

C. $\frac{3}{\sqrt{2}}$
 D. 2

Answer: C

- Watch Video Solution

17. When a wave travels in a medium, the particle displacement is given by the equation $y=a \sin 2 \pi(b t-c x)$, where a, b and c are constants. The maximum particle velocity will be twice the wave velocity. If

> A. $a c=\frac{1}{\pi}$
> B. $a c=\pi$
> C. $b=a c$
> D. $b=\frac{1}{a c}$

Answer: A

D Watch Video Solution

18. A rectangular wire loop with length a and width b lies in the xy-plane as shown. Within
the loop, there is a time dependent magnetic
field
$\vec{B}=c[(x \cos \omega t) \hat{i}+(y \sin \omega t) \hat{k}]$. Here , с
and ω are constants. The magnitude of emf induced in the loop as function of time is

b

A. $\left|\frac{a b^{2} c}{2} \omega \cos \omega t\right|$
B. $\left|a b^{2} c \omega \cos \omega t\right|$
C. $\left|\frac{a^{2} b c}{2} \omega \sin o m \geq a t\right|$
D. None of the options

Answer: A

- Watch Video Solution

19. Two points mass m and $2 m$ are kept at a distance a. Find the speed of particles and their relative velocity of approach when separation becomes $a / 2$.
A. $2 \sqrt{\frac{3 a}{2 G m}}$
B. $\sqrt{\frac{a}{2 G m}}$
C. $2 \sqrt{\frac{2 G m}{3 a}}$
D. $\sqrt{\frac{6 G m}{a}}$

Answer: D

D Watch Video Solution

20. In a common base transistor circuit, the
current gain is 0.98 . On changing the emitter
current by 5.00 mA , the change in collector current is
A. 0.196 mA
B. 2.45 mA
C. 4.9 mA
D. 5.1 mA

Answer: C
(Watch Video Solution
21. In the electrical network shown in the
figure, What will be the potential difference (in
volt) across 3Ω resistance ?

22. Internal energy of $n_{1} \mathrm{~mol}$ of hydrogen of temperature T is equal to the internal energy of $n_{2} \mathrm{~mol}$ of helium at temperature $2 T$. The ratio n_{1} / n_{2} is

D Watch Video Solution

23. What is the amount of heat required (in calories) to convert 10 g of ice at $-10^{\circ} \mathrm{C}$ into steam at $100^{\circ} C$? Given that latent heat of vaporization of water is $540 \mathrm{cal} \mathrm{g}^{-1}$, latent
heat of fusion of ice is $80 \mathrm{cal} \mathrm{g}^{-1}$, the specific heat capacity of water and ice are $1 \mathrm{cal} \mathrm{g}^{-1} \cdot{ }^{\circ} C^{-1} \quad$ and $\quad 0.5 \mathrm{cal} \mathrm{g}^{-1} \cdot{ }^{\circ} C^{-1}$ respectively.

D Watch Video Solution

24. A thin film of soap solution $\left(\mu_{s}=1.4\right)$ lies
on the top of a glass plate ($\mu_{g}=1.5$). When
visible light is incident almost normal to the
plate, two adjacent reflection maxima are
observed at two wavelengths 420 and 630 nm .

The minimum thickness of the soap solution is

D Watch Video Solution

25. A police car moving at $30 \mathrm{~m} \mathrm{~s}^{-1}$, chases a motorcyclist. The policeman sounds his horn at 180 Hz , while both of them move towards a stationary siren of frequency 160 HZ . He does not observe any beats then, calculate the speed (in $\mathrm{m} \mathrm{s}^{-1}$) of the motorcyclist round
off two decimal places? [speed of sound
$\left.=330 m s^{-1}\right]$

- Watch Video Solution

