©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 91

Physics

1. A rod of mass M and length K is hinged at its
one end n carries a block f mass m at its other
end. A spring of force constant k_{1} is installed
at distance a form the hinge and another of
force constant k_{2} at a distance b as shown in
the figure. If the whole arrangement rests on a smooth horizontal table top. Find the frequency of vibrations.

A. $\frac{1}{2 \pi} \sqrt{\frac{k_{1} a^{2}+k_{2} b^{2}}{L^{2}\left(m+\frac{M}{3}\right)}}$
B. $\frac{1}{2 \pi} \sqrt{\frac{k_{1} a^{2}+k_{2} b^{2}}{L^{2}\left(m-\frac{M}{3}\right)}}$
C. $\frac{1}{2 \pi} \sqrt{\frac{k_{1} a^{2}-k_{2} b^{2}}{L^{2}\left(m+\frac{M}{3}\right)}}$
D. $\frac{1}{4 \pi} \sqrt{\frac{k_{1} a^{2}+k_{2} b^{2}}{L^{2}\left(m-\frac{M}{3}\right)}}$

Answer: A

D Watch Video Solution

2. Velocity of a particle moving in a straight
line varies with its displacement as
$v=(\sqrt{4+4 s}) m / s . \quad$ Displacement of
particle at time $t=0$ is $s=0$. Find displacement of particle at time $t=2 s$.
A. 8 m
B. 6 m
C. 4 m
D. 10 m

Answer: A
(Watch Video Solution
3. The wavelength of the first spectral line in
the Balmer series of hydrogen atom is $6561 A^{\circ}$
.The wavelength of the second spectral line in
the Balmer series of singly - ionized helium atom is
A. $1215 \AA$
B. $1640 \AA$
C. $2320 \AA$
D. $4687 \AA$

- Watch Video Solution

4. Figure shows the variation in the internal energy U with the volume V of 2.0 mol of an ideal gas in a cyclic process abcda. The temperatures of the gas at b and c are 500 K and 300 K respectively. Calculate the heat absorbed by the gas during the process.

A. $400 \mathrm{R} \ln 2$

B. $500 \mathrm{R} \ln 2$
C. $700 \mathrm{R} \ln 2$
D. $800 \mathrm{R} \ln 2$

Answer: A

D Watch Video Solution

5. The system is released from rest with both
the springs in unstretched positions. Mass of each block is 1 kg and force constant of each spring is $10 \mathrm{~N} / \mathrm{m}$. Then choose the incorrect option(s). Assume pulley and strings are
massless and all contacts are smooth.

$$
\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

A. Extension of horizontal spring in equilibrium is $2 / 5 \mathrm{~m}$

B. Extension of vertical spring in

C. Maximum speed of the block A is

$$
\sqrt{\frac{8}{5}} m / s
$$

D. Maximum speed of the block A is
$\sqrt{14} m / s$

Answer: D

D Watch Video Solution

6. Two wires are fixed in a sanometer. Their tension are in the ratio 8:1 The lengths are in
the ratio $36: 35$ The diameter are in the ratio

4:1 Densities of the materials are in the ratio
$1: 2$ if the lower frequency in the setting is 360 Hz . The beat frequency when the two wires are sounded together is
A. 8
B. 5
C. 10
D. 6

Answer: C

7. A signal wave of frequency 12 kHz is modulated with a carrier wave of frequency 2-

51 MHz . The upper and lower side band frequencies are respectively.
A. 2512 kHz and 2508 kHz
B. 2522 kHz and 2488 kHz
C. 2522 kHz and 2498 kHz
D. 2512 kHz and 2488 kHz

D Watch Video Solution

8. In given figure, a wire loop has been bent so
that it has three segments $a b$ (a quarter circle), bc (a square corner) \& ca (straight line).

Here are three choices for a magnetic field through the loop -

(1) $\overrightarrow{ }\left(B_{1}\right)=3 \hat{i}+7 \hat{j}-5 t \hat{k}$
(2) $\overrightarrow{B_{2}}=5 t \hat{i}-4 \hat{j}-15 \hat{k}$
(3) $\overrightarrow{B_{3}}=2 \hat{i}-5 t \hat{j}-12 \hat{k}$
where B is in milli tesla and t is in second. If
the induced current in the loop due to
$\overrightarrow{B_{1}}, \overrightarrow{B_{2}}, \overrightarrow{B_{3}}$ are i_{1}, i_{2}, i_{3} respectively then

> A. $i_{1}>i_{2}>i_{3}$
> B. $i_{2}>i_{1}>i_{3}$
> C. $i_{3}>i_{2}>i_{1}$
> D. $i_{1}=i_{2}=i_{3}$

Answer: B

D Watch Video Solution

9. A block is placed on an inclined plane moving towards right horizontally with an acceleration $a_{0}=g$. The length of the plane
$A C=1 m$. Friction is absent everywhere. The
time taken by the block to reach from C to A is
$:\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. 1.2 s
B. 0.74 s
C. 2.56 s
D. 0.42 s

Answer: B

D Watch Video Solution

10. A uniform thin hemispherical shell is kept
at rest and in equilibrium on an inclined plane
of angle of inclination $\theta=30^{\circ}$ as shown in
figure. If the surface of the inclined plane is
sufficiently rough to prevent sliding then the
angle α made by the plane of hemisphere with
inclined plane is :

A. value of μ is needed
B. 30°
C. 45°
D. 60°

Answer: D

- Watch Video Solution

11. A rod of length I and cross-section area A
has a variable thermal conductivity given by K
$=\alpha \mathrm{T}$, where α is a positive constant and T is
temperature in kelvin. Two ends of the rod are maintained at temperature T_{1} and T_{2}
($T_{1}>T_{2}$). Heat current flowing through the rod will be
A. $\frac{A \alpha\left(T_{1}^{2}-T_{2}^{2}\right)}{3 l}$
B. $\frac{A \alpha\left(T_{1}^{2}+T_{2}^{2}\right)}{l}$
C. $\frac{A \alpha\left(T_{1}^{2}+T_{2}^{2}\right)}{3 l}$
D. $\frac{A \alpha\left(T_{1}^{2}-T_{2}^{2}\right)}{2 l}$

Answer: D

- Watch Video Solution

12. A monochromatic beam of light falls on

Young's double slit experiment apparatus as
shown in figure. A thin sheet of glass is
inserted in front of lower slit $S_{2}(\lambda=600 \mathrm{~nm}$
is wavelength of source)

If central bright fringe is obtained on screen at ' O ' then

A. $(\mu-1) t=d \sin \theta$
B. $(\mu-1) t=d \cos \theta$
C. $(\mu t)=d \theta$
D. Not possible

Answer: A

D Watch Video Solution
13. The frequency f of vibrations of a mass m suspended from a spring of spring constant k is given by $f=C m^{x} k^{y}$, where C is a dimensionless constant. The values of x and y are, respectively,

$$
\begin{aligned}
& \text { А. } x=\frac{1}{2}, y=\frac{1}{2} \\
& \text { В. } x=-\frac{1}{2}, y=-\frac{1}{2} \\
& \text { С. } x=\frac{1}{2}, y=-\frac{1}{2} \\
& \text { D. } x=-\frac{1}{2}, y=\frac{1}{2}
\end{aligned}
$$

Answer: D

Watch Video Solution

14. A body of mass 2 m moving with velocity v makes a head - on elastic collision with another body of mass m which is initially at rest. Loss of kinetic energy of the colliding body (mass 2 m) is
A. $\frac{1}{9}$ of its initial kinetic energy
B. $\frac{1}{6}$ of its initial kinetic energy
C. $\frac{1}{2}$ of its initial kinetic energy
D. $\frac{8}{9}$ of its initial kinetic energy

Answer: D

- Watch Video Solution

15. An object and a concave mirror are approaching each other with velocities $10 \mathrm{~m} / \mathrm{s}$
and $5 \mathrm{~m} / \mathrm{s}$ as shown in figure. The velocity of image of object at the instant shown in figure

A. $65 m / s \hat{i}$
B. $65 m / s(-\hat{i})$
C. $40 \mathrm{~m} / \mathrm{s} \hat{i}$
D. $40 m / s(-\hat{i})$

Answer: B

- Watch Video Solution

16. The temperature of equal masses of three different liquids A, B and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when A and B are mixed is $16^{\circ} \mathrm{C}$
and when B and C are mixed it is $23^{\circ} \mathrm{C}$. What
should be the temperature when A and C are mixed?
A. $18.2^{\circ} \mathrm{C}$
B. $22^{\circ} C$
C. $20.2^{\circ} \mathrm{C}$
D. $25.2^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

17. In a photoelectric effect measurement, the stoppingg potential for a given metal is found to be V_{0} volt, when radiation of wavelength λ_{0}
is used. If radiation of wavelength $2 \lambda_{0}$ is used with the same metal, then the stopping potential (in V) will be

> A. $\frac{V_{0}}{2}$
> B. $2 V_{0}$
> C. $V_{0}+\frac{h c}{2 e \lambda_{0}}$
> D. $V_{0}-\frac{h c}{2 e \lambda_{e}}$

Answer: D

D Watch Video Solution
18. Four very long, current carrying wires in the same plane intersect to form a square 40.0 cm on each side as shown in figure. Find the magnitude and direction of the current I so that the magnetic field at the centre of square is zero. Wires are insulated from each other.

A. 22 A
B. 38 A
C. $2 A$
D. 18 A

Answer: C

D Watch Video Solution
19. If the ratio of the radius of a nucleus with

61 neutrons to that of helium nucleus is 3 ,
then the atomic number of this nucleus is
A. 27
B. 47
C. 51
D. 61

Answer: B

D Watch Video Solution

20. A cone of radius R and height H, is hanging inside a liquid of density ρ by means of a string as shown in figure. The force due to
the liquid acting on the slant surface of the

cone is

A. $\rho \pi H R^{2}$
B. $\pi \rho H R^{2}$
C. $\frac{4}{3} \pi \rho H R^{2}$

$$
\text { D. } \frac{2}{3} \pi \rho g H R^{2}
$$

Answer: D

D Watch Video Solution

21. A larger spherical mass M is fixed at one position and two identical point masses m are kept on a line passing through the centre of
M. The point masses are connected by rigid massless rod of length I and this assembly is
free to move along the line connecting them.

All three masses interact only throght their mutual gravitational interaction. When the point mass nearer to M is at a distance $r=31$ form M, the tensin in the rod is zero for $m=k\left(\frac{M}{288}\right)$. The value of k is

22. A small block slides with velocity $0.5 \sqrt{g r}$ on the horizontal frictionless surface as shown in the figure. The block leaves the surface at point C. Calculate angle θ in the figure.

23. In the shown wireframe, each side of a square (the smallest square) has a resistance
7Ω. What is the equivalent resistance value (in ohm) of the circuit between the points A and B
?

(D) Watch Video Solution
24. A parallel plate capacitor with plate area A and separation between the plates d is filled with different dielectrics as shown in the figure. If the equivalent capacitance between $a \& b$ is $\frac{m A \varepsilon_{0}}{n d}$ then find the value of $(m+n)$, where m and n are least positive integers.

25. Two magnets held together in earth's magnetic field when the same polarity together causes $12 \mathrm{vib} / \mathrm{min}$ and when opposite poles $4 \mathrm{vib} / \mathrm{min}$. What is the ratio of magnetic moments?

- Watch Video Solution

