©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 92

Physics

1. In the spectrum of hydrogen atom, the ratio
of the longest wavelength in Lyman series to
the longest wavelangth in the Balmer series is

$$
\begin{aligned}
& \text { A. } \frac{5}{27} \\
& \text { B. } \frac{1}{93} \\
& \text { C. } \frac{4}{9} \\
& \text { D. } \frac{3}{2}
\end{aligned}
$$

Answer: A

- Watch Video Solution

2. Two blocks A and B of mass m and $2 m$ respectively are connected by a light spring of force constant k. They are placed on a smooth
horizontal surface. Spring is stretched by a length x and then released. Find the relative velocity of the blocks when the spring comes to its natural length

A. $x \sqrt{\frac{3 k}{2 m}}$
B. $x \sqrt{\left(2 \frac{k}{3 m}\right)}$
C. $x \sqrt{\frac{k}{3 m}}$
D. $x \sqrt{\frac{2 k}{m}}$

Answer: A

D Watch Video Solution

3. A mass 2 kg is whirled in a horizontal circle
by means of a string at an initial speed of 5
revolutions per minute. Keeping the radius
constant the tension in the string is doubled.

The new speed is nearly
A. 2.25 rpm
B. 7 rpm
C. 10 rpm
D. 14 rpm

Answer: B

D Watch Video Solution

4. Two bulbs consume the same power when operated at 200 V and 300 V respectively.

When these bulbs are connected in series across a DC source of 400 V , then the ratio of power consumed across them is
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{4}{9}$
D. $\frac{9}{4}$

Answer: C

D Watch Video Solution

5. Two coils have a mutual inductance 0.005 H .

The current changes in the first coil according to equation $I=I_{0} \sin \omega t$, where $I_{0}=10 A$
and $\omega=100 \pi$ radian $/ \mathrm{sec}$. The maximum value

of e.m.f. in the second coil is

A. 2π
B. 5π
C. π
D. 4π

Answer: B
(Watch Video Solution
6. Let there be a spherical symmetric charge density varying as $p(r)=p_{0} \frac{r}{R}$ upto $\mathrm{r}=\mathrm{R}$ and $\rho(r)=0$ for $r>R$, where r is the distance from the origin. The electric field at on a distance $r(r<R)$ from the origin is given by
A. $\frac{\rho_{0} r^{2}}{4 \varepsilon_{0} R}$
B. $\frac{\rho_{0} r}{4 \varepsilon_{0} R}$
C. $\frac{\rho_{0} r^{4}}{\varepsilon_{0} R}$
D. $\frac{\rho_{0} r^{2}}{\varepsilon_{0} R}$

Answer: A

D Watch Video Solution

7. A bar magnet of length 10 cm and pole strength $2 A m$ makes an angle 60° with a uniform magnetic field of induction 50T. The couple acting on it is
A. $5 \sqrt{3} N m$
B. $\sqrt{3} N m$
C. $10 \sqrt{3} N m$

D. $20 \sqrt{3} \mathrm{Nm}$

Answer: A

D Watch Video Solution

8. The value of gravitational acceleration 'g' at
a height 'h' above the earth's surface is $\frac{g}{4}$,
then ($\mathrm{R}=\ldots \ldots \ldots$) (where $\mathrm{R}=$ radius of the earth)

$$
\text { A. } h=R
$$

B. $h=\frac{R}{2}$
C. $h=\frac{R}{3}$
D. $h=\frac{R}{4}$

Answer: A

D Watch Video Solution

9. A cup of tea cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 40 seconds. The ambient temperature is $30^{\circ} \mathrm{C}$
. In cooling from $60^{\circ} C$ to $50^{\circ} C$, it will take
time:
A. 35 s
B. 30 s
C. 32 s
D. 48 s

Answer: C

D Watch Video Solution

10. A particle of charge per unit mass α is released from origin with a velocity $\vec{v}=v_{0} \hat{i}$
$\vec{B}=-B_{0} \hat{k}$ for $x \leq \frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}$
and $\vec{B}=0$ for $x>\frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}$
The x-coordinate of the particle at time $t\left(\frac{\pi}{3 B_{0} \alpha}\right)$ would be

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}+\frac{\sqrt{3}}{2} v_{0}\left(t-\frac{\pi}{B_{0} \alpha}\right) \\
& \text { B. } \frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}+v_{0}\left(t-\frac{\pi}{3 B_{0} \alpha}\right) \\
& \text { C. } \frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}+\frac{v_{0}}{2}\left(t-\frac{\pi}{3 B_{0} \alpha}\right) \\
& \text { D. } \frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}+\frac{v_{0} t}{2}
\end{aligned}
$$

Answer: C

11. A ball is projected from point A with
velocity $10 \mathrm{~ms}^{-1}$ perpendicular to the inclined plane as shown in figure. Range of the ball on the inclined plane is
A. $\frac{40}{3} m$
B. $\frac{20}{13} m$
C. $\frac{13}{20} m$
D. $\frac{13}{40} m$

D Watch Video Solution

12. Obtain the binding energy (in MeV) of a nitrogen nucleus $\left({ }_{7}^{14} N\right)$, given $m\left({ }_{7}^{14} N\right)$
$=14.00307 u$
A. 56 MeV
B. 98 MeV
C. 104 MeV
D. 112 MeV

Answer: C

D Watch Video Solution

13. A U tube of uniform bore of cross sectional
area A has been set up vertically with open
ends facing up Now m gm of a liquid of density d is poured into it. The column of
liquid in this tube will oscillation with a period
T such that

$$
\text { A. } 2 \pi \sqrt{\frac{M}{g}}
$$

B. $2 \pi \sqrt{\frac{M A}{d g}}$
C. $2 \pi \sqrt{\frac{M}{A d g}}$
D. $2 \pi \sqrt{\frac{M}{2 A d g}}$

Answer: D

D Watch Video Solution

14. Calculate the number of photons emitted per second by a 10 watt sodium vapor lamp. Assume that 90% of the consumed energy is
converted into light. Wavelength of sodium
light is $590 \mathrm{~nm} . h=6.62 \times 10^{-34} J s$
A. 0.267×10^{18}
B. 0.267×10^{19}
C. 0.267×10^{20}
D. 0.267×10^{17}

Answer: C

- Watch Video Solution

15. A cylinder with a movable piston contains
air under a pressure p_{1} and a soap bubble of
radius r. The pressure p_{2} to which the air should be compressed by slowly pushing the piston into the cylinder for the soap bubble to reduce its size by half will be : (The surface tension is σ, and the temperature T is maintained constant)
A. $P_{1}=\frac{4 T}{r}$
B. $4 P_{1}+\frac{12 T}{r}$
C. $8 P_{1}+\frac{24 T}{r}$
D. $P_{1}=\frac{2 T}{r}$

Answer: C

D Watch Video Solution

16. A narrow parallel beam of light is incident on a transparent sphere of refractive index n if
the beam finally gets focused at a point situated at a distance $=2 \times$ (radius of sphere)
form the center of the sphere then find n ?

$$
\text { A. } \frac{4}{3}
$$

B. $\frac{3}{2}$
C. $-\frac{4}{6}$
D. $\frac{-2}{3}$

Answer: A

D Watch Video Solution

17. The moment of inertia of a door of mass m, length $2 l$ and width l about its longer side is.
A. $\frac{11 m l^{2}}{24}$
B. $\frac{5 m l^{2}}{24}$
C. $\frac{m l^{2}}{3}$
D. None of these

Answer: C

D Watch Video Solution

18. A steel ball of mass $m_{1}=1 \mathrm{~kg}$ moving with velocity $50 \mathrm{~ms}^{-1}$ collides with another ball of mass $m_{2}=200 g$ lying on the ground. Due the collision, the KE is lost and their internal
energies change equally and T_{1} and T_{2} are the temperature changes of masses
m_{1} and m_{2} respectively. If the specific heat of steel is unity and $J=4.18 \mathrm{~J} \mathrm{cal}^{-1}$, then
A. $T_{1}=7.1^{\circ} C$ and $T_{2}=1.47^{\circ} \mathrm{C}$
B. $T_{1}=1.47^{\circ} \mathrm{C}$ and $T_{2}=7.1^{\circ} \mathrm{C}$
C. $T_{1}=3.4^{\circ} C$ and $T_{2}=17.0^{\circ} \mathrm{C}$
D. $T_{1}=17.0^{\circ} C$ and $T_{2}=3.4^{\circ} C$

Answer: C

19. Fraunhoffer diffraction pattern of a single
slit is obtained in the focal plane of lens of
focal length $1 m$. If third maximum is formed at
a distance of 5 mm from the central maximum
and wavelength of light used is $5000 \AA$, then
width of the slit will be -
A. 0.02 cm
B. 0.03 cm
C. 0.04 cm
D. 1 cm

Answer: B

D Watch Video Solution

20. For simple harmonic vibrations
$y_{1}=8 \cos \omega t$
$y_{2}=4 \cos \left(\omega t+\frac{\pi}{2}\right)$
$y_{3}=2 \cos (\omega t+\pi)$
$y_{4}=\cos \left(\omega t+\frac{3 \pi}{2}\right)$ are superimposed on
one another. The resulting amplitude and phase are respectively
A. $\sqrt{45}$ and $\tan ^{-1}\left(\frac{1}{2}\right)$
B. $\sqrt{45}$ and $\tan ^{-1}\left(\frac{1}{3}\right)$
C. $\sqrt{75}$ and $\tan ^{-1}(2)$
D. $\sqrt{75}$ and $\tan ^{-1}\left(\frac{1}{3}\right)$

Answer: A

D Watch Video Solution

21. A Carnot engine whose sinl is at $300 K$ has
an efficiency of 40%. By how much should the temperature of source be increased so as to
increase its efficiency by 50% of original efficiency.

D Watch Video Solution

22. A book of weight $20 N$ is pressed between two hands and each hand exerts a force of
$40 N$. If the block just starts to slide down

Coefficient of friction is .

- Watch Video Solution

23. A light emitting diode ($L E D$) has a voltage drop of $2 V$ across it and passes a current of 10 mA . When it operates with a 6 V battery through a limiting resistor R. The value of R is

- Watch Video Solution

24. In a screw gauge, 5 complete rotations of
the screw cause if to move a linear distance of
0.25 cm . There are 100 circular scale divisions.

The thickness of a wire measured by this screw gauge gives a reading of 4 main scale divisions and 30 circular scale divisions. Assuming negligible zero error, the thickness of the wire is :

D Watch Video Solution

25. A 3 kg object has initial velocity $(6 \hat{i}-2 \hat{j}) m s^{-1}$. What will be the total work done (in joule) on the object if its velocity changes to $(8 \hat{i}+4 \hat{j}) m s^{-1}$?
