©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 93

Physics

1. A block having 12 g of an element is placed
in a room. This element is a radioactive element with a half-life of 15 years. After how
many years will there be just 1.5 g of the element in the box?
A. 40 year
B. 45 year
C. 20 year
D. 15 year

Answer: B
(Watch Video Solution
2. A train of length L move with a constant speed V_{t}. A person at the back of the train
fires a bullet at time $\mathrm{t}=0$ towards a target which is at a distance of $D($ at time $t=0)$ from
the front of the train (on the same direction of motion). Another person at the front of the train fires another bullet at time $\mathrm{t}=\mathrm{T}$ towards
the same target. Both bullets reach the target
at the same time. Assuming the speed of the bullets V_{b} are same, the length of the train is
A. $T\left(V_{b} \times 2 V_{t}\right)$
B. $T\left(V_{b}+V_{t}\right)$
C. $2 T\left(V_{b}+2 V_{t}\right)$
D. $2 T\left(V_{b}-2 V_{t}\right)$

Answer: B

- Watch Video Solution

3. In Young's doble-slit experiment, if the monochromatic source of light is replaced by white light, then one sees
A. Interference pattern disappears
B. Fringe separation remains fixed
C. Fringe closest to the central fringe is
red.
D. Fringe separation increases

Answer: C

- Watch Video Solution

4. A cell of emf E having an internal resistance
R varies with R as shown in figure by the curve

A. A
B. B
C. C
D. D

- Watch Video Solution

5. In amplitude modulation
A. Amplitude remains constant but
frequency change
B. Both amplitude and frequency do not
change
C. Both amplitude and frequency change

D. Amplitude of the carrier wave changes

 according to information signal
Answer: D

- Watch Video Solution

6. Work done by an external agent to move
slowly a charge Q from rim of a uniformly charged horizontal disc of radius R and charge per unit area σ, to center of this disc is

$$
\begin{aligned}
& \text { A. } \frac{\sigma R Q}{\varepsilon_{0}}\left(\frac{2}{\pi}-\frac{1}{2}\right) \\
& \text { B. } \frac{\sigma R Q}{\varepsilon_{0}}\left(\frac{1}{2}-\frac{1}{\pi}\right) \\
& \text { C. } \frac{\sigma a Q}{\varepsilon_{0}}\left(\frac{1}{\pi}-\frac{1}{2}\right) \\
& \text { D. } \frac{\sigma a Q}{\varepsilon_{0}}\left(\frac{1}{2}-\frac{2}{\pi}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

7. A ray of ligh, travelling in medium A, is incident on plane interface of two media A and
B and gets refracted into medium B. The angle
of incidence is i and that of refraction is r .

Graph between $\sin (i)$ and $\sin (r)$ is as shown in diagram. The correct statement among the following is

A. Speed of light in medium B is three
fourth of that in medium A

B. Total internal reflection can take place

C. Refraction index of medium A is greater than that of medium B
D. None of these

Answer: A

D Watch Video Solution
8. Find the difference of kinetic energies of photoelectrons emitted from a surface by
light of wavelength $2500 \AA$ and $5000 \AA$. $h=6.62 \times 10^{-34} \mathrm{~J}$ s.
A. 1.61 eV
B. 2.47 eV
C. 3.96 eV
D. $3.96 \times 10^{-19} \mathrm{eV}$

Answer: B
(Watch Video Solution
9. A black body of mass 34.38 g and surface area $19.2 \mathrm{~cm}^{2}$ is at an initial temperature of 400 K . It is allowed to cool inside an evacuated enclose kept at constant temperature 300 K .

The rate of cooling is $0.04^{\circ} \mathrm{C} / \mathrm{s}$. The specific
heat of body is (Stefan's constant

$$
\left.\sigma=5.73 \times 10^{-8} j m^{-2} K^{-4}\right)
$$

A. $2800 \mathrm{~J} / \mathrm{kg}-K$
B. $2100 \mathrm{~J} / \mathrm{kg}-K$
C. $1400 \mathrm{~J} / \mathrm{kg}-K$

D. $1200 \mathrm{~J} / \mathrm{kg}-K$

Answer: C

D Watch Video Solution

10. Energy of the electron in $n t h$ orbit of hydrogen atom is given by $E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$.

The amount of energy needed to transfer electron from first orbit to third orbit is
A. 10.2 J
B. 12.09 J
C. 12.09 eV
D. 13.6 eV

Answer: C

D Watch Video Solution

11. If pressure P, velocity V and time T are taken as fundamental physical quantities, the dimensional formula of force if
A. $P V^{2} T^{2}$
B. $P^{-1} V^{2} T^{-2}$
C. $P V T^{2}$
D. $P^{-1} V T^{2}$

Answer: A

D Watch Video Solution

12. A solid sphere of radius R made of a material of bulk modulus K is surrounded by a
liquid in a cylindrical container. A massless
pistion of area A floats on the surface of the
liquid. When a mass M is placed on the piston
to compress the liquid the fractional change in the radius of the sphere, $\delta R / R$, is
A. $\frac{M g}{A K}$
B. $\frac{M g}{3 A K}$
C. $\frac{3 M g}{A K}$
D. $\frac{M g}{2 A K}$

Answer: B

13. An inductor of inductance $L=400 \mathrm{mH}$ and
resistors of resistance $R_{1}=2 \Omega$ and $R_{2}=2 \Omega$
are connected to a battery of emf 12 V as
shown in the figure. The internal resistance of
the battery is negligible. The switch S is closed
at $t=0$. The potential drop across L as a
function of time is

A. $12 e^{-5 t} V$
B. $\frac{12}{t} e^{3 t} V$
C. $6\left(1-e^{-\frac{t}{0.2}}\right) V$
D. $6 e^{-5 t} V$

Answer: A

D Watch Video Solution

14. A massless platform is kept on a light elastic spring as shown in figure. When a small
stone of mass 0.1 kg is dropped on the pan
from a height of 0.24 m , the spring compresses by 0.01 m . From what height should the stone be droppped to cause a
compression of 0.04 m in the spring ?

A. 0.96 m
B. 2.96 m
C. 3.96 m
D. 0.48 m

Answer: A

D Watch Video Solution
15. Three identical bar magnets each of magnetic moment M are arranged in the form of an equilateral triangle such that at two
vertices like poles are in contact. The resultant magnetic moment will be
A. Zero
B. 2 M
C. $\sqrt{2} M$
D. $M \sqrt{3}$

Answer: B
(Watch Video Solution
16. A wire of length 100 m is tightly wounded on a hollow tube of radius 5 mm and length 1 m . A current of 1 A is flowing in the wire. Then magnetic field strength inside the tube will be
A. 4 T
B. 4 mT
C. 40 mT
D. 40 T

Answer: B

- Watch Video Solution

17. A thin uniform rod, pivoted at O, is rotating
in the horizontal plane with constatn angular
speed ω, as shown in the figure. At time $t=0, a$ small insect starts from O and moves with constant sped v , with respect to the rod towards the other end. It reaches the end of the rod at $t=T$ and stops. The angular speed of the system remains ω throughout. The magnitude of the torque $(|\vec{\pi}|)$ about O , as a function of time is best represented by which
plot?

A.

B.

C.

D.

Answer: B

- Watch Video Solution

18. Sound waves of frequency 660 Hz fall normally on a perfectly reflecting wall. The shortest distance from the wall at which the air particles have maximum amplitude of vibration is meters.
A. $\frac{7}{8} m$
B. $\frac{3}{8} m$
C. $\frac{1}{8} m$
D. $\frac{1}{4} m$

Answer: C

D Watch Video Solution

19. Two wires of diameter 0.25 cm , one made of
steel and other made of brass, are loaded as
shown in the figure. The unloaded length of
the steel wire is 1.5 m and that of brass is
1.0 m . Young's modulus of steel is $2.0 \times 10^{11} \mathrm{~Pa}$
and that of brass is $1.0 \times 10^{11} \mathrm{~Pa}$. Compute
the ratio of elongations of steel and brass
wires. $\frac{\triangle l_{\text {steel }}}{\triangle l_{\text {brass }}}=$?
A. $1.3 \times 10^{-2} m, 1.5 \times 10^{-4} m$
B. $1.5 \times 10^{-4} m, 1.3 \times 10^{-2} m$
C. $2.0 \times 10^{-5} m, 1.8 \times 10^{-3}$
D. $1.8 \times 10^{-3}, 2.0 \times 10^{-5} \mathrm{~m}$

Answer: B

D Watch Video Solution

20. A bullet of mass m strikes an obstruction and deviates off at 60° to its original direction.

If its speed is also changed from u to v, find
the magnitude of the impulse acting on the bullet.
A. $m \sqrt{u^{2}-u v+v^{2}}$
B. $m \sqrt{u^{2}+u v-v^{2}}$
C. $m \sqrt{u^{4}-u v+v^{4}}$
D. $m \sqrt{u^{4}+u v-v^{4}}$

Answer: A

D Watch Video Solution
21. The equation of motion of a projectile is
$y=12 x-\frac{3}{4} x^{2}$. The horizontal component of velocity is $3 m s^{-1}$. What is the range of the projectile ?

D Watch Video Solution

22. A 2 kg stone at the end of a string 1 m long
is whirled in a vertical circle at a constant speed. The speed of the stone is $4 \mathrm{~m} / \mathrm{sec}$. The
tension in the string will be 52 N , when the stone is
A. At the top of the circle
B. At the bottom of the circle
C. Halfway down
D. None of the above

Answer: 52
(Watch Video Solution
23. The ratio of acceleration due to gravity at a height 3 R above earth 's surface to the acceleration due to gravity on the surface of the earth is (where $\mathrm{R}=$ radius of earth)

D Watch Video Solution

24. Two identical systems, with heat capacity at
a constant volume that varies as $C_{v}=b T^{3}$
(where b is a constant) are thermally isolated.

Initially, one system is at a temperature 100 K
and the other is at 200K. The systems are then brought to thermal contact and the combined system is allowed reach thermal equilibrium. If $T_{0}^{4}=n \times 10^{8}$ then what will be the value of n , where T_{0} is the final temperature in kelvin?

- Watch Video Solution

25. A simple harmonic wave of amplitude 8 units travels along positive x-axis. At any given
instant of time, for a particle at a distance of
10 cm from the origin, the displacement is
$+6 u n i t s$, and for a particle at a distance of

25 cm from the origin, the displacement is +4 units. Calculate the wavelength.

D Watch Video Solution

