đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 96

Physics

1. Light of wavelength 600 nm is incident normally on a slit of width 0.2 mm . The
angular width of central maxima in the diffraction pattern is
A. $6 \times 10^{-3} \mathrm{rad}$
B. $4 \times 10^{-3} \mathrm{rad}$
C. $2.4 \times 10^{-3} \mathrm{rad}$
D. $4.5 \times 10^{-3} \mathrm{rad}$

Answer: A
(Watch Video Solution
2. A flexible wire bent in the form of a circle is place in a uniform magnetic field perpendicularly to the plane of the coil. The radius of the coil changes as shown in Figure.

The graph of magnetude of induced emf in the coil is represented by

B.

C.

D.

Answer: B

D Watch Video Solution
3. A wheel of radius $0.4 m$ can rotate freely about its axis as shown in the figure. A string is wrapped over its rim and a mass of 4 kg is hung. An angular acceleration of $8 \mathrm{rad} / \mathrm{s}^{2}$ is produced in it due to the torque. Then, the moment of inertia of the wheel is (
$g=10 m / s^{2}$)

A. $2 \mathrm{kgm}^{2}$
B. $1 \mathrm{kgm}^{2}$
C. $4 \mathrm{kgm}^{2}$
D. $8 \mathrm{kgm}^{2}$

Answer: A

- Watch Video Solution

4. In a vertical U-tube containing a luquid, the two arms are maintained at different temperatures, t_{1} and t_{2}. The liquid coplumns in the two arms have heights l_{1} and l_{2} respectively. The coefficient of volume
expansion of the liquid is equal to

A. $\frac{l_{2}-l_{1}}{l_{1} t_{1}-l_{2} t_{2}}$
B. $\frac{l_{1}-l_{2}}{l_{1} t_{2}-l_{2} t_{1}}$
C. $\frac{l_{2}-l_{1}}{l_{1} t_{2}-l_{2} t_{1}}$

$$
\text { D. } \frac{l_{2}-l_{1}}{l_{2} t_{2}-l_{1} t_{1}}
$$

Answer: C

D Watch Video Solution

5. Two long concentric cylindrical conductors of radii a and $\mathrm{b}(b<a)$ are maintained at a potential difference V and carry equal opposite current I. Show that an electron with a particular velocity u parallel to the axis may
travel undeviated in the evacuated region between the conductors.

$$
\begin{aligned}
& \text { A. } \frac{4 \pi V}{\mu_{0} I \ln \left(\frac{b}{a}\right)} \\
& \text { B. } \frac{2 \pi V}{\mu_{0} I \ln \left(\frac{a}{b}\right)} \\
& \text { C. } \frac{2 \pi V}{\mu_{0} I \ln \left(\frac{b}{a}\right)} \\
& \text { D. } \frac{8 \pi V}{\mu_{0} I \ln \left(\frac{a}{b}\right)}
\end{aligned}
$$

Answer: B

D Watch Video Solution

6. A body of mass $m=1 \mathrm{~kg}$ is moving in a medium and experiences a frictional force $F=-$ $k v$, where v is the speed of the body. The initial speed is $v_{0}=10 \mathrm{~ms}^{-1}$ and after 10 s , its energy becomes half of the initial energy.

Then, the value of k is
A. $10 \ln \sqrt{2}$
B. $\ln \sqrt{2}$
C. $\frac{1}{20} \ln 2$
D. $10 \ln 2$

Answer: C

- Watch Video Solution

7. A uniform rectangular thin sheet $A B C D$ of
mass M has length a and breadth b , as shown
in the figure. If the shaded portion $H B G O$ is
cut-off, the coordinates of the center of mass
of the remaining portion will be:

A. $\frac{5 a}{12}, \frac{5 b}{12}$
B. $\frac{5 a}{3}, \frac{5 b}{3}$
C. $\frac{2 a}{3}, \frac{2 b}{3}$
D. $\frac{3 a}{4}, \frac{3 b}{4}$

- Watch Video Solution

8. One mole of an ideal gas is taken along the process in which $P V^{\prime}=$ constant. The graph shown represents the variation of molar heat capacity of such a gas with respect to x. The value of c^{\prime} and $x^{\prime} c$ respectively, are given by

A. $\frac{5}{2} R, \frac{5}{2}$
B. $\frac{5}{2} R, \frac{5}{3}$
C. $\frac{7}{2} R, \frac{7}{2}$
D. $\frac{5}{2} R, \frac{7}{5}$

Answer: B

D Watch Video Solution

9. A small ball of mass $2 \times 10^{-3} \mathrm{~kg}$ having a charge of $1 \mu C$ is suspended by a string of length 0.8 m . Another identical ball having the
same charge is kept at the point of suspension. Determine the miniumum
horizontal velocity which should be imparted to the lower ball, so that it can make complete revolution.
A. $6.2 m s^{-1}$
B. $9.8 m s^{-1}$
C. $11.6 m s^{-1}$
D. $5.86 m s^{-1}$

Answer: D
10. If the area to be covered for TV telecast is
doubles then height of transmitting antenna
(TV tower) will have to be:
A. Doubled
B. Halved
C. Quadrupled
D. 16 times

- Watch Video Solution

11. A square coil of edge l having n turns
carries a current i. it is kept on a smooth
horizontal plate. A uniform magnetic field B exists in a direction parallel to an edge the total mass of the coil is M. What should be the minimum value of B for which the coil will start tipping over?

$$
\begin{aligned}
& \text { А. }\left(\frac{m g}{n i l}\right)^{2} \\
& \text { B. } \frac{2 m g}{n i l}
\end{aligned}
$$

> C. $\frac{m g}{2 n i l}$
> D. $\frac{m g}{n i l}$

Answer: C

- Watch Video Solution

12. A piece of burnt wood of mass 20 g is found to have a $\cdot{ }^{14} C$ activity of 4 decay s^{-1}.

How long has the tree that this wood belonged to be dead ? Given $T_{\frac{1}{2}}$ of $.{ }^{14} C=5730$ year.
A. 1840
B. 1830
C. 1820
D. 1860

Answer: A

D View Text Solution
13. A pendulum of length L carries a negative
charge $-q$ on the bob. A positive charge $+q$ is
held at the point of support. Then, the time period of the bob is
A. Greater than $2 \pi \sqrt{\frac{L}{g}}$
B. Less than $2 \pi \sqrt{\frac{L}{g}}$
C. equal to $2 \pi \sqrt{\frac{L}{g}}$
D. Equal to $2 \pi \sqrt{\frac{2 L}{g}}$

Answer: A

- Watch Video Solution

14. Two rods (one semi-circular and other straight) of same material and of same crosssectional area are joined as shown in the figure. The point A and B are maintained at different temperature. Find the ratio of the heat transferred through a cross-section of a semi-circular rod to the heat transferred through a cross section of the straight rod in
a given time.

A. $2: \pi$
B. 1:2
C. $\pi: 2$
D. $3: 2$

Answer: A

- Watch Video Solution

15. Time (T), velocity (C) and angular momentum (h) are chosen as fundamental quantities instead of mass, length and time. In terms of these, the dimensions of mass would be

$$
\begin{aligned}
& \text { A. }[M]=\left[T^{-1} C^{-2} h\right] \\
& \text { B. }[M]=\left[T^{-1} C^{2} h\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. }[M]=\left[T^{-1} C^{-2} h^{-1}\right] \\
& \text { D. }[M]=\left[T C^{-2} h\right]
\end{aligned}
$$

Answer: A

D Watch Video Solution

16. Electrons with energy 80 keV are incident on the tungsten target of an X - rays tube, k shell electrons of tungsten have 72.5 keV energy X- rays emitted by the tube contain only

A. A
 continuous

(Bremsstrahlung) with a minimum
wavelength of $0.155 \AA$
B. A
continuous
X-ray
spectrum
(Bremsstrahlung) with all wavelengths
C. The characteristic X-ray spectrum of
tungsten
D. A continuous X-ray spectrum
(Bremsstrahlung) with a minimum
wavelength of $0.155 \AA$ and the

characteristic X-ray spectrum of

 tungsten
Answer: D

D Watch Video Solution

17. The graph between the mass of liquid inside the capillary and radius of capillary is

B.

C.

Answer: C

D Watch Video Solution

18. An observer whose least distance of distinct vision is ' d ' views the his own face in a convex mirror of radius of curvature ' r ' .Prove that magnification produced can not exceed $\frac{r}{d+\sqrt{d^{2}+r^{2}}}$
A. $\frac{r}{d+\sqrt{r^{2}+d^{2}}}$
B. $\frac{r}{d+\sqrt{r^{2}-d^{2}}}$
C. $\frac{r}{d-\sqrt{r+d}}$
D. $\frac{r}{d+\sqrt{d+r}}$
19. If stopping potentials corresponding to wavelengths 4000 A and 4500 A are 1.3 V and
0.9 V , respectively, then the work function of the metal is
A. 0.3 eV
B. 1.3 eV
C. 2.3 eV
D. 5 eV

Answer: C

D Watch Video Solution

20. An open pipe of sufficient length is dipping
in water with a speed v vertically. If at any
instant l is lengths of tube avoca water. Then
the rate at which fundamental frequency of
pipe changes, is (speed of sound $=c$)

A. $\frac{c v}{2 l^{2}}$
B. $\frac{c v}{4 l^{2}}$
C. $\frac{c}{2 v^{2} l^{2}}$
D. $\frac{c}{4 v^{2} l^{2}}$

Answer: B

D Watch Video Solution

21. A network of four capacitors of capacity
equal to $C_{1}=C, C_{2}=2 C, C_{3}=3 C$ and
$C_{4}=4 C$ are connected to a battery as shown in the figure. The ratio o fthe charges on C_{2} an
C_{4} is

D Watch Video Solution

22. A rocket has to be launched from earh in
such a way that it never returns. If E is the
minimum energy delivered by the rocket
launcher what should be the minimum energy
that the launcher should have if the same rocket has launcher from the surface of the moon ? Assume that the density of the earth and the moob are equal and that the earth's volume is 64 times the volume of the moon

- Watch Video Solution

23. Two trains, which are moving along different tracks in opposite directions, are put
on the same track due to a mistake. Their drivers, on noticing the mistake, start slowing down the trains when the trains are 300 m apart. Graphs given in figure show their velocities as function of time as the trains slow down. The separation between the trains when both have stopped is

24. The rear side of a truck is open and a box of mass 2 kg is placed on the truck 8 meters away from the open end. $\mu=0.1$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$. The truck starts from rest with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ on a straight road.

The box will fall off the truck when it is at distance from the starting point equal to

D Watch Video Solution

25. Figure shows a block P of mass m resting on a smooth floor at a distance I from a rigid
wall. Block is pushed towards right by a distance $3 / 2$ and released. When block passes
from its mean position another block of mass m_{1} is dropped over it, find the minimum value of m_{1} so that the combined block just collides with the left wall.
 $\leftarrow l \rightarrow 1$

- Watch Video Solution

