©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NCERT CHEMISTRY (ENGLISH)

P-BLOCK ELEMENTS

Multiple Choice Question Mcqs

1. On addition of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ reduces HI to I_{2}
B. HI is of violet colour
C. HI gets oxidised to I_{2}
D. HI changes to HIO_{3}

- Watch Video Solution

2. In qualitative analysis when $H_{2} S$ is passed through an aqueous solution of salt acidified with dil. HCL, a block precipitate is obtainned .On boiling the precipitate with dil. HNO_{3} it forms a solution of blue colour .

Addition of excess of aqueous solution of ammonia to this solution given
A. deep blue precipitate of $\mathrm{Cu}(\mathrm{OH})_{2}$
B. deep blue solution of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
C. deep blue solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
D. deep blue solution of $\mathrm{Cu}(\mathrm{OH})_{2} . \mathrm{Cu}\left(\mathrm{ON}_{3}\right)_{2}$

Answer: B

- Watch Video Solution

3. In a cyclotrimetaphosphoric acid molecule, how many single and double bonds are present ?
A. 3 double bonds, 9 single bonds
B. 6 double bonds, 6 single bonds
C. 3 double bonds, 12 single bonds
D. Zero double bond, 12 single bonds

Answer: C

- Watch Video Solution

4. Which of the following elements can be involved in $p \pi-d \pi$ bonding?
A. Carbon
B. Nitrogen
C. phosphorus
D. Boron

Answer: C

- Watch Video Solution

5. Which of the following pairs of ions are isoelectronic and also isostructural?
A. $\mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
B. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
C. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
D. $\mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$

Answer: A

D Watch Video Solution

6. Affinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids should have highest bond dissociation

enthalpy?

A. HF
B. HCl
C. HBr
D. HI

Answer: A

- Watch Video Solution

7. Bond dissociation enthalpy of $\mathrm{E}-\mathrm{H}$ ($\mathrm{E}=\mathrm{e}=\mathrm{ement}$) bond is given below.

Which of the following compounds will act as strongest reducing agent?
A. NH_{3}
B. PH_{3}
C. AsH_{3}
D. SbH_{3}

Answer: D

- Watch Video Solution

8. On heating with concentrated NaOH solution in an inert atmosphere of CO_{2}, white phosphorus gives a gas. Which of the following statement is incorrect about the gas?
A. It is highly poisonous and has smell like rotten fish
B. It's solution in water decomposes in the presence of light
C. It is more basic then NH_{3}
D. It is less basic then NH_{3}

Answer: C

9. Which of the following acids forms three series of salts?
A. $H_{3} \mathrm{PO}_{2}$
B. $\mathrm{H}_{3} \mathrm{BO}_{3}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{3} \mathrm{PO}_{3}$

Answer: C

- Watch Video Solution

10. Strong reducing behaviour of $\mathrm{H}_{3} \mathrm{PO}_{2}$ is due to
A. low oxidation state of phosphorus
B. presence of two \qquad OH groups and one P \qquad H bond
C. presence of one \qquad OH group and two P \qquad H bonds
D. high electron gain enthalphy of phosphorus

Answer: C

- Watch Video Solution

11. On heating lead nitrate forms oxides of nitrogen and lead. The oxides formed are :
A. $\mathrm{N}_{2} \mathrm{O}, \mathrm{PbO}$
B. $\mathrm{NO}_{2}, \mathrm{PbO}$
C. $N O, P b O$
D. $\mathrm{NO}, \mathrm{PbO}_{2}$

Answer: B

- Watch Video Solution

12. Which of the following elements does not show alltropy?
A. Nitrogen
B. Bismuth
C. Antimony
D. Arsenic

Answer: A

- Watch Video Solution

13. The maximum covalency of nitrogen is
A. 3
B. 5
C. 4
D. 6

Answer: C

14. Which of the following statements is wrong ?
A. Single N_N bond is stroger then the single P_P bond.
B. $P H_{3}$ can act as a ligand in the formation of coordination compound with transition elements.
C. NO_{2} is paramagnetic in nature.
D. Covalency of nitrogen in $\mathrm{N}_{2} \mathrm{O}_{5}$ is four.

Answer: A

- Watch Video Solution

15. A brown ring is formed in the ring test for NO_{3}^{-}ion. It is due to the formation of
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}$
B. $\mathrm{Fe} \mathrm{SO}_{4} \cdot \mathrm{NO}_{2}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NO}_{2}\right)\right]^{2+}$
D. $\mathrm{FeSO}_{4} \cdot \mathrm{HNO}_{3}$

Answer: A

- Watch Video Solution

16. Elements of group - 15 compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is
A. $B i_{2} O_{5}$
B. $B i F_{5}$
C. BiCl_{5}
D. $B i_{2} S_{5}$

Answer: B

17. On heating ammonium dichromate and barium azide separately we get
A. N_{2} in both cases
B. N_{2} with ammonium dichromate and NO with barium azide
C. $\mathrm{N}_{2} \mathrm{O}$ with ammonium dichromate and N_{2} with barium azide
D. $\mathrm{N}_{2} \mathrm{O}$ with ammonium dichromate and NO_{2} with barium azide

Answer: A

- Watch Video Solution

18. In the preparation of HNO_{3}, we get NO gas by catalytic oxidation of ammonia . The moles of No produced by the oxidation of two moles of NH_{3} will be \qquad
A. 2
B. 3
C. 4
D. 6

Answer: A

D Watch Video Solution

19. The oxidation state of central atom in the anion of compound $\mathrm{NaH} \mathrm{H}_{2} \mathrm{PO}_{2}$ will be
A. +3
B. +5
C. +1
D. -3

Answer: C

20. Which of the following is not tetrahedral in shape?
A. NH_{4}^{+}
B. SiCl_{4}
C. $S F_{4}$
D. SO_{4}^{2-}

Answer: C

Watch Video Solution

21. Which of the following are peroxoacids of sulphur ?
A. $\mathrm{H}_{2} \mathrm{SO}_{5}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
B. $\mathrm{H}_{2} \mathrm{SO}_{5}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$

- Watch Video Solution

22. Hot conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as molderately strong oxidising agent it oxidises both metals and non - metals. Which of the following element is oxidised by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ into two gaseous products. ?
A. Cu
B. S
C. C
D. Zn

Answer: C

23. A black compound of manganese reacts with a halogen acid to give greenish yellow gas. When excess of this gas reacts with 'NH_(3) an unstable trihalide is formed. In this process the oxidation state of nitrogen changes from
A. $-3 \rightarrow+3$
B. $-3 \rightarrow 0$
C. $-3 \rightarrow+5$
D. $0 \rightarrow-3$

Answer: A

- Watch Video Solution

24. In the preparation of compounds of Xe , Bartlett has taken $\mathrm{O}_{2}^{+} \mathrm{PtF}_{6}{ }^{-}$ as a base compound. This is becase
A. both O_{2} and Xe have same size.
B. both O_{2} and Xe have same electron gain enthalpy.
C. both O_{2} and Xe have almost same ionisation enthalphy.
D. both Xe and O_{2} are gases.

Answer: C

- Watch Video Solution

25. In solid state, $P C l_{5}$ is a........
A. convalent solid
B. octahedral structure
C. ionic solid with $\left[\mathrm{PCl}_{6}\right]^{+}$octahedral and $\left[\mathrm{PCl}_{4}\right]^{-}$tetrahedral
D. ionic solid with $\left[\mathrm{PCl}_{4}\right]^{+}$tetrahedral and $\left[\mathrm{PCl}_{6}\right]^{-}$octahedral

Answer: D

26. Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidising power.

Ion	$\mathrm{ClO}_{\mathbf{4}}$	$1 \mathbf{O}_{\mathbf{4}}^{-}$	$\mathbf{B r O}_{\mathbf{4}}^{-}$
Reduction potential E /V	$\mathrm{H}^{\prime}=1.10 \mathrm{~V}$	$f^{\circ}=1.65 \mathrm{~V}$	$E^{0}=1.74 \mathrm{~V}$

A. $\mathrm{ClO}_{4}^{-}>\mathrm{lO}_{4}^{-}>\mathrm{BrO}_{4}^{-}$
B. $\mathrm{lO}_{4}^{-}>\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$
C. $\mathrm{BrO}_{4}^{-}>\mathrm{lO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$
D. $\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}>\mathrm{lO}_{4}^{-}$

Answer: C

- Watch Video Solution

27. Which of the following is isoelectronic pair ?
A. $\mathrm{ICl}_{2}, \mathrm{ClO}_{2}$
B. $\mathrm{BrO}_{2}^{-}, \mathrm{BrF} \mathrm{F}_{2}^{+}$
C. $\mathrm{ClO}_{2}, \mathrm{BrF}$
D. $C N^{-}, O_{3}$

Answer: B

- Watch Video Solution

28. If chlorine gas is passed through hot NaOH solution, two changes are observed in the oxidation number of chlorine during the reaction. These are . And..........
A. 0 to +5
B. 0 to +3
C. 0 to - 1
D. 0 to +3

Answer: A:C

29. Which of the following options are not accordance with the property mentioned against them?
(a) $F_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>I_{2}$ Oxodising power
(b) $M I>M B r>M C l>M F$ lonic character of metal halide
(c) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$ Bond dissociation enthalphy
(d) $\mathrm{HI}<\mathrm{HBr}<\mathrm{HCl}<\mathrm{HF}$ Hydrogen - halogen bond strength

- Watch Video Solution

30. Which of the following is correct for P_{4} molecule of white phosphorus
$?$
A. It has 6 lone pairs of electrons
B. It has six P \qquad P single bonds
C. It has three P \qquad P single bonds
D. It has lone pair of electron

Answer: B::D

- Watch Video Solution

31. Which of the following statements are correct?
I. Among halogens, radius ratio between iodine and fluorine is maximum.
II. Leaving F-F bond, all halogens have weaker $X-X$ bond than $X-X$ ' bond in interhalogens.
III. Among interhalogen compounds, maximum number of atoms are present in iodine fluoride.
IV. Interhalogen compounds are more reactive than halogen compounds.

The correct option is

- Watch Video Solution

32. Which of the following statements are correct for SO_{2} gas?
(a) It acts as bleaching agent in moist conditions.
(b) Its molecule has linear geometry.
(c) Its dilute solution is used as disinfectant.
(d) It can be prepared by the reaction of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ with metal sulphide.

- Watch Video Solution

33. Which of the following statements are correct ?
(a) All the three N
(b) All P ___ Cl bond lengths in PCl_{5} molecule in gaseous state are equal
(c) P_{4} molecule in white phosphrus have angular strain therefore white phosphorus is very reactive
(d) $P C l_{5}$ is ionic in solid state in which cation is tetrahedral and anion is octahedral . And anion is octahedral.

- Watch Video Solution

34. Which of the following orders are correct as per the properties mentioned against ?
(a) $\mathrm{As}_{2} \mathrm{O}_{3}<\mathrm{SiO}_{2}<\mathrm{P}_{2} \mathrm{O}_{3} \mathrm{SO}_{2}$ Acid strength.
(b) $\mathrm{AsH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}$ Enthalpy of vaporisation.
(c) $\mathrm{S}<\mathrm{O}<\mathrm{Cl}<\mathrm{F}$ More negative electron gain enthalphy.
(d) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$ Thermal stability.

- Watch Video Solution

35. Which of the following statements are correct?
(a) $\mathrm{S} \ldots \mathrm{S}$ bond is present in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
(b) In peroxosulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{5}\right)$ sulphur is in +6 oxidation steta
(c)IronpowderalongwithAl_(2)O_(3) and K_(2)O isusedasacatalyst \in thepreparationof $\mathrm{NH}_{-}(3)$
byHaber'sprocess(d)Chan $\geq \in$ enthalpyispositivef or thepreparation.
SO_(3)bycatalytic \otimes idationofSO_(2)'

- Watch Video Solution

36. In which of the following reactions conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used as an oxidising reagent?
A. $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}$
B. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO} 4+\mathrm{HCl}$

Answer: B::C

- Watch Video Solution

37. Which of the following statements are true?
(a) Only type of interactions between particles of nobel gases are due to weak dispersion forces.
(b) Ionisation enthalphy of molecular oxygen is very close that of xenon.
(c) Hydrolysis of $X e F_{6}$ is a redox reaction.
(d) Xenon fluorides are not reactive.
38. In the preparation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by Contact process, why is SO_{3} not absorbed directly in water to form $\mathrm{H}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

39. Write a balanced chemical equation for the reaction showing catalytic oxidation of NH_{3} by atmosoheric oxygen.

- Watch Video Solution

40. Write the structure of pyrophosphoric acid.

- Watch Video Solution

41. PH_{3} forms bubbles when passed slowly in water but NH_{3} dissolves.

Explain why?
42. In $P C l_{5}$ phosphorus is in $s p^{3} \mathrm{~d}$ hybridised state but all its five bonds are not equivalent. Justify your answer with reason.

- Watch Video Solution

43. Why is nitric oxide paramagnetic in gaseous state but the solid obtained on cooling it is diamagnetic ?

- Watch Video Solution

44. Give one reason to explain why ClF_{3} exists but FCl_{3} does not exist?

- Watch Video Solution

45. Out of $\mathrm{H}_{2} \mathrm{O}$ which one has higher bond angle and why?
46. $S F_{6}$ is known but $S C_{6}$ is not. Why?

- Watch Video Solution

47. On reaction with $C l_{2}$ phosphorus forms two types of halides ' A ' and 'B'.

Halide 'A' is yellowish- white powder but halide ' B ' is colourless oily liquid. Identify A and B and write the formulae of their hydrolysis products.

- Watch Video Solution

48. In the ring test of NO_{3}^{-}ion, Fe^{2+} ion reduces nitrate ion to nitric oxide, which combines with $\mathrm{Fe}^{2+}(\mathrm{aq})$ ion to form brown complex .

Write the reactions involved in the formation of brown ring.

- Watch Video Solution

49. Explain why the stability of oxoacids of chlorine increases in the order given below.
$\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$

- Watch Video Solution

50. Explain why ozone is thermodynamically less stable then oxgen?

- Watch Video Solution

51. $P_{4} O_{6}$ reacts with water according to equation $P_{4} O_{6} \rightarrow 4 H_{3} \mathrm{PO}_{3}$.

Calculate the volume of 0.1 MNaOH solution required to neutralise the acid formed by dissolving 1.1g of $\mathrm{P}_{4} \mathrm{O}_{6}$ in $\mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

52. White phosphorus reacts with chlorine and the product hydrolyses in the presence of water. Calcualte the mass of HCl obtained by the hydrolysis of the product formed by the reaction of 62 g of white phosphorus with chlorine in the presence of water.

- Watch Video Solution

53. Name three oxoacids of nitrogen . Write the disproportionation reaction of that oxoacid of nitrogen is in +3 oxidation state.

- Watch Video Solution

54. Nitric acid forms an oxide of nitrogen on reaction with $P_{4} O_{10}$. Write the reaction involved. Also write the resonating structures of the oxide of nitrogen formed.

- Watch Video Solution

55. (i) white phosphorus (ii) red phosporus and (iii) balck phosphorus. Write the difference between white red and black phosphorus on the basis of their structure and reactivity.

Phosphorus has three allotropic forms \qquad

- Watch Video Solution

56. Given an example to show the effect of concentration of nitric acid on the formation of oxidation product.

- Watch Video Solution

57. $P C l_{5}$ reacts with finely divided silver on heating and a white silver salt is obtained, which dissolves on adding excess aqueous NH_{3} solution. Write the reactions involved to explain what happens.

- Watch Video Solution

58. Phosphorus forms a number of oxoacids. Out of these oxoacids, phosphinic acid has strong reducing property. Write its structure and also write a reaction its reducing behaviour.

- Watch Video Solution

Matching The Columns

1. Match the compounds given in Column I with the hybridisation and shape given in Column II and mark the correct option.
$\begin{array}{llll}A & B & C & D\end{array}$
A. $\begin{array}{llll}1 & 3 & 4 & 2\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}1 & 2 & 4 & 3\end{array}$
C. $\begin{array}{llll}A & B & C & D \\ 4 & 3 & 1 & 2\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 4 & 1 & 2 & 3\end{array}$

Answer:

2. Match the formulas of oxides given in Column I with the type of oxide given in Column II and mark the correct option.

Column I		Column II	
A.	$\mathrm{Pb}_{3} \mathrm{O}_{4}$	1.	Neutral oxide
B.	$\mathrm{N}_{2} \mathrm{O}$	2.	Acidic oxide
C.	$\mathrm{Mn}_{2} \mathrm{O}_{7}$	3.	Basic oxide
D.	$\mathrm{Bi}_{2} \mathrm{O}_{3}$	4.	Mixed oxide

A $\begin{array}{llll}A & B & C & D\end{array}$
A. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$

в $A \quad B \quad C \quad D$
B.
$\begin{array}{llll}4 & 1 & 2 & 3\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{llll}3 & 2 & 4 & 1\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 4 & 3 & 1 & 2\end{array}$

Answer:

3. Match the items of Columns I and II and mark the correct option.

	Column 1		Column II
A	$\mathrm{H}_{6} \mathrm{SO}_{4}$	1	Highest electron gain enthalpy
8	($11, \mathrm{NO}$)	?	Chalcogen
c	(1)	1	Teargas
0	Sulphur	4.	Storage batteries

$\begin{array}{llll}A & B & C & D\end{array}$
A. $\begin{array}{llll}4 & 3 & 1 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}3 & 4 & 1 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C.
$\begin{array}{llll}4 & 1 & 4 & 3\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 2 & 1 & 3 & 4\end{array}$

Answer:

- Watch Video Solution

4. Match the species given in Column I with the shape given in Column II and mark the correct option.

Column I			Column II
A.	SF_{4}	1.	Tetrahedral
B.	Br_{3}	2.	Pyramidal
C.	BrO_{3}^{-}	3.	Sea-saw shaped
D.	NH_{4}^{+}	4.	Bent T-shaped

A. $A \quad B \quad C \quad D$
$\begin{array}{llll}3 & 2 & 1 & 4\end{array}$
B. $A \quad B \quad C \quad D$
${ }^{B .} \begin{array}{llll}3 & 4 & 2 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
D. $\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}1 & 4 & 3 & 2\end{array}$

Answer:

Watch Video Solution
5. Match the items of Columns I and II and mark the correct option.

	Column I		Column II
A	its partial hiydrolysis does not change crudation state of central atom	1.	He
6		2	XeF ${ }_{6}$
c	 	;	CCFF
U		4.	A 1

, $A \quad B \quad C \quad D$
$\begin{array}{llll}1 & 4 & 2 & 3\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}2 & 1 & 4 & 3\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 1 & 3 & 2 & 4\end{array}$

Answer:

- Watch Video Solution

Assertion And Reason

1. Assertion (A) N_{2} is less reactive than P_{4}.

Reason (R) Nitrogen has more electron gain enthalpy then phosphorus.
A. Both Assertion and Reason are correct statements, and Reason is the correct explation of the Assertion.
B. Both Assertion and Reason are correct statements, and Reason is not the correct explanation of the Assertion.
C. Assertion is correct, but Reason is wrong statement.
D. Assertion is wrong but Reason is correct statement.

Answer:

- Watch Video Solution

2. Assertion (A) HNO_{3} makes iron passive.

Reason (R) $H N O_{3}$ forms a protective layer of ferric nitrate on the surface of iron.
A. Both Assertion and Reason are correct statements, and Reason is the correct explation of the Assertion.
B. Both Assertion and Reason are correct statements, and Reason is not the correct explanation of the Assertion.
C. Assertion is correct, but Reason is wrong statement.
D. Assertion is wrong but Reason is correct statement.

Answer:

- Watch Video Solution

3. Assertion (A) HI cannot be prepared by the reaction of KI with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Reason (R) HI has lowest H__X bond strenth among halogen acids.
A. Both Assertion and Reason are correct statements, and Reason is the correct explation of the Assertion.
B. Both Assertion and Reason are correct statements, and Reason is not the correct explanation of the Assertion.
C. Assertion is correct, but Reason is wrong statement.
D. Assertion is wrong but Reason is correct statement.

Answer:

4. Assertion (A) Both rhombic and monoclinic sulphur exist as S_{8} but oxygen exists as O_{2}.

Reason (R) Oxygen forms $p \pi-p \pi$ multiple bond due to small size and small bond length but $p \pi-p \pi$ bonding is not possoble is not possible in sulphur.
A. Both Assertion and Reason are correct statements, and Reason is the correct explation of the Assertion.
B. Both Assertion and Reason are correct statements, and Reason is not the correct explanation of the Assertion.
C. Assertion is correct, but Reason is wrong statement.
D. Assertion is wrong but Reason is correct statement.

Answer:

- Watch Video Solution

5. Assertion (A) NaCl reacts with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give colourless fumes with pungent smell. But on adding MnO_{2} the fumes become greenish yellow.

Reason (R) MnO_{2} oxidises HCl to chlorine gas which is greensh yellow.
A. Both Assertion and Reason are correct statements, and Reason is the correct explation of the Assertion.
B. Both Assertion and Reason are correct statements, and Reason is not the correct explanation of the Assertion.
C. Assertion is correct, but Reason is wrong statement.
D. Assertion is wrong but Reason is correct statement.

Answer:

- Watch Video Solution

6. Assertion:- $S F_{6}$ cannot be hydrolysed but $S F_{4}$ can be.

Reason:- Six F atoms in $S F_{6}$ prevent the attack of $\mathrm{H}_{2} \mathrm{O}$ on sulphur atom of $S F_{6}$
A. Both Assertion and Reason are correct statements, and Reason is the correct explation of the Assertion.
B. Both Assertion and Reason are correct statements, and Reason is not the correct explanation of the Assertion.
C. Assertion is correct, but Reason is wrong statement.
D. Assertion is wrong but Reason is correct statement.

Answer:

- Watch Video Solution

Long Answer Type Questions

1. An amorphous soild A burns in air to form a gas B which turns lime water milky. The gas is also produced as a by - product during roasting of sulohide ore. This gas decolourises acidified aqueous KMnO_{4} solution and reduces Fe^{3+} to Fe^{2+}. Identify the solid A and the gas B and write the reactions involved.

- Watch Video Solution

2. On heating lead (II) nitrate gives a brown gas " A ". The gas " A " on cooling changes to colourless solid "B" . Solid B on heating with NO changes to a blue solid 'C. Identify ' A', 'B' and' C and also write reactions involved and draw the structures of ' B ' and ' C ' .

- Watch Video Solution

3. On heating compound (A) gives a gas (B) which is a constituent of air.

This gas when treted with 3 moles of hydrogen $\left(H_{2}\right)$ in the presence of a catalyat gives another gas (C) which is basic in nature. Gas C on further
oxidation in moist condition gives a compound (D) which is a part of acid rain. Identify compounds (A) to (D) and also give necessary equations of all the steps involved .

