©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 98

Physics

1. Antenna current of an $A M$ broadcast transmitter modulated by 50% is $11 A$. The
carrier current is
A. 9.25 A
B. 22 A
C. 10.3 A
D. 5.5 A

Answer: C

D Watch Video Solution

2. A $3-\mathrm{kg}$ steel ball strikes a wall with a speed of $10.0 \mathrm{~ms}^{-1}$ at an angle of 60.0° with the surfaces of the wall. The ball bounces off with
the same speed and same angle. If the ball was
in contact with the wall for 0.2 s , find the average force exerted by the wall on the ball.

A. 96 N
B. 48 N
C. 24 N

D. 12 N

Answer: C

D Watch Video Solution

3. If first excitation potential of a hydrogen-like
atom is V electron volt, then the ionization energy of this atom will be:
A. V electron volt
B. $\frac{3 V}{4}$ electron volt
C. $\frac{4 V}{3}$ electron volt

D. Cannot be calculated by given

 information
Answer: C

D Watch Video Solution

4. A liquid is kept in a cylindrical vessel which is rotated along its axis. The liquid rises at the sides, if the radius of vessel is $0.05 m$ and the speed of rotation is $2 \mathrm{rev} / \mathrm{s}$, find difference in
the height of the liquid at the centre of the vessel and its sides.

A. 0.001 m

B. 0.002 m
C. 0.01 m
D. 0.02 m

Answer: D
(Watch Video Solution

5. A car moves uniformly along a horizontal sin

curve $y=a \sin (x / \alpha)$, when a and are certain
constants. The coefficient of friction between
the wheels and the road is equal to μ. At what
velocity will the car ride without sliding ?

$$
\begin{aligned}
& \text { A. } \alpha \sqrt{\frac{k g}{a}} \\
& \text { B. }-\alpha \sqrt{\frac{k g}{a}} \\
& \text { C. } k g \sqrt{\frac{\alpha}{a}} \\
& \text { D. }-k g \sqrt{\frac{\alpha}{a}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

6. In two separate set-ups of the Young's double slit experiment, fringes of equal width are observed when lights of wavelength in the ratio of $1: 2$ are used. If the ratio of the slit separation in the two cases is $2: 1$, the ratio of the distance between the plane of the slits and the screen in the two set-ups are
A. 1:1
B. 1:4
C. $2: 1$
D. 4:1

Answer: D

D Watch Video Solution

7. The bob A of a simple pendulum is released from a horizontal position A as shown in figure. If the length of the pendulum is 1.5 m , what is the speed with which the bob arrives at the lowermost point B, given that it
dissipates 5% of its initial energy against air resistance ?

A. $5 m s^{-1}$
B. $5.5 m s^{-1}$
C. $5.3 m s^{-1}$
D. $4.4 m s^{-1}$

Answer: C

D Watch Video Solution

8. what should be the velocity of an electron
so that its momentum becomes equal to that
of a photon of wavelength $5200 \AA$
A. $700 \mathrm{~ms}^{-1}$
B. $1000 \mathrm{~ms}^{-1}$
C. $1400 m s^{-1}$
D. $2800 m s^{-1}$

Answer: C

D Watch Video Solution

9. A bulb is rated at $100 \mathrm{~V}, 100 \mathrm{~W}$. It can be treated as a resistor. Find out the inductance of an inductor (called choke coil) that should be connected in series with the bulb at its rated power with the help of an ac source of 200 V and 50 Hz .
A. $\frac{\pi}{\sqrt{3}} H$

B. 100 H

C. $\frac{\sqrt{2}}{\pi} H$
D. $\frac{\sqrt{3}}{\pi} H$

Answer: D

- Watch Video Solution

10. A closed pipe of length 22 cm , when excited by a 1875 Hz source forms standing waves. The number of pressure nodes formed in the pipe are [velocity of sound in air $=330 \mathrm{~ms}^{-1}$]
A. 1
B. 2
C. 4
D. 3

Answer: D

D Watch Video Solution

11. The magnetic field at P in the arrangement shown is
A. $\frac{\mu_{0} i}{\sqrt{2} \pi d}\left(1-\frac{1}{\sqrt{2}}\right) \otimes$
B. $\frac{2 \mu_{0} i}{\sqrt{2} \pi d} \otimes$
C. $\frac{\mu_{0} i}{\sqrt{2} \pi d} \otimes$
D. $\frac{\mu_{0} i}{2 \sqrt{2} \pi d}\left(1+\frac{1}{\sqrt{2}}\right) \otimes$

Answer: A

- Watch Video Solution

12. Two large identical plates are placed in front of each other at $x=d$ and $x=2 d$ as shown in the figure. If charges on plates are
Q and $-5 Q$, the potential versus distance graph for the region $x=0=3 d$ is: (d is very
small and potential at $\mathrm{x}=0$ is V_{0})
$\left.V_{0}\right)$

A.

B.

C.

Answer: A

D Watch Video Solution

13. Dimensional formula of magentic flux is
A. $\left[M L^{2} T^{-2} A^{-1}\right]$
B. $\left[M L^{0} T^{-2} A^{-2}\right]$
C. $\left[M^{0} L^{-2} T^{-2} A^{-3}\right]$
D. $\left[M L^{2} T^{-2} A^{3}\right]$

Answer: A

D Watch Video Solution

14. A uniform disc of mass M and radius R is supported vertically by a pivot at its periphery as shown. A particle of mass M is fixed to the rim and raised to the highest point above the
center. The system is released from rest and it can rotate about pivot freely. The angular speed of the system when the attached object is directly beneath the pivot, is

M

A. $\sqrt{\frac{24 g}{11 R}}$
B. $\sqrt{\frac{8 g}{11 R}}$
C. $\sqrt{\frac{8 g}{3 R}}$
D. $\sqrt{\frac{14 g}{3 R}}$

Answer: A

D Watch Video Solution

15. A piece of ice falls from a height h so that it melts completely. Only one-quarter of the heat produced is absobed by the ice and all energy of ice gets converted into heat during its fall.

The value of h is
[Latent heat of ice is $3.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ and $g=10 N / k g]$
A. 34 km
B. 544 km
C. 136 km
D. 68 km

Answer: C

D Watch Video Solution
16. 80 kg of a radioactive material reduces to

10 kg in 1 h . The decay constant of the material
is

> A. $5.80 \times 10^{-4} s^{-1}$
> B. $1.16 \times 10^{-3} s^{-1}$
> C. $2.32 \times 10^{-3} s^{-1}$
> D. $4.64 \times 10^{-3} s^{-1}$

Answer: A

- Watch Video Solution

17. Image of an object approaching a convex mirror of radius of curvature 20 m along its optical axis is observed to move from $\frac{25}{3} m \rightarrow \frac{50}{7} \mathrm{~m}$ in 30 seconds. What is the speed of the object in km per hour?
A. $3 k m h^{-1}$
B. $4 k m h^{-1}$
C. $5 k m h^{-1}$
D. $6 k m h^{-1}$

- Watch Video Solution

18. A large flat metal surface has a uniform
charge density $(+\sigma)$. An electron of mass m and charge ρ leaves the surface at the point A with speed u and returns to it at point B.

Disregarding gravity the maximum value of $A B$ is

A. $\frac{4 u^{2} m \varepsilon_{0}}{\sigma \rho}$
B. $\frac{u^{2} \cdot \rho \varepsilon_{0}}{m \sigma}$
C. $\frac{2 \varepsilon_{0} m u^{2}}{\rho \sigma}$
D. $\frac{u^{2} \sigma \rho}{\varepsilon . m}$

Answer: C

D Watch Video Solution

19. A gas is heated in such a way that its pressure and volume both become double.

Now by decreasing temperature, some of air
molecules were introduced into the container to maintain the increased volume and pressure. Assuming $1 / 4^{\text {th }}$ of the initial number of moles has been given for this purpose. By what fraction of temperature has been raised finally of initial absolute temperature.
A. 4 times
B. $\frac{16}{5}$ times
C. $\frac{4}{5}$ times
D. $\frac{1}{5}$ times

Answer: B

D Watch Video Solution

20. A body executes S.H.M. of period 20 seconds. Its velocity is $5 \mathrm{cms}^{-1}, 2$ seconds after it has passed the mean position. Find the amplitude of the bob
$\left(\cos 36^{\circ}=0.809\right)$
A. 21.45 cm
B. 16.56 cm
C. 19.67 cm
D. 15.34 cm

Answer: C

- Watch Video Solution

21. A ball is dropped from height 5 m . The time after which ball stops rebounding if coefficient of restitution between ball and ground $e=1 / 2$, is
22. Two cells having an internal resistance of
0.2Ω and 0.4Ω are connected in parallel, the voltage across the battery is 1.5 V . If the emf of one cell is 1.2 V , then the emf of second cell is

- Watch Video Solution

23. An astronomical telescope has objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away
from the objective and the image is formed at infinity, the lenses must be separated by a distance

D Watch Video Solution

24. $1.56 \times 10^{5} \mathrm{~J}$ of heat is conducted through
is $2 m^{2}$ wall of 12 cm thick in one hour.

Temperature difference between the two sides
of the wall is $20^{\circ} \mathrm{C}$. The thermal conductivity
of the material of the wall is (in $W m^{-1} K^{-1}$)

D Watch Video Solution
\square

