©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 106

Physics

1. In hydrogen atom, the electron is moving
$2.18 \times 10^{6} \mathrm{~ms}^{-1}$ in an orbit of radius 0.528 A . The acceleration of the electron is .

$$
\begin{aligned}
& \text { A. } 9 \times 10^{18} m s^{-2} \\
& \text { B. } 9 \times 10^{22} m s^{-2} \\
& \text { C. } 9 \times 10^{-22} m s^{-2} \\
& \text { D. } 9 \times 10^{12} m s^{-2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

2. If an alpha particle and a deuteron move with velocity v and 2 v respectively, the ratio of their de-Broglie wave length will be
A. $1: \sqrt{2}$
B. 2:1
C. 1:1
D. $\sqrt{2}: 1$

Answer: C

- Watch Video Solution

3. A proton of mass m collides elastically with
a particle of unknown mass at rest After the
collision the proton and the unknwon particle are seen moving at an angle fo 90° with respect to each other The mass of unknown particle is :
A. $m(\sqrt{3})$
B. $\frac{m}{2}$
C. $2 m$
D. m

Answer: D

D Watch Video Solution

4. A body of mass m_{1} moving at a constant speed undergoes an elastic head on collision with a body of mass m_{2} initially at rest. The ratio of the kinetic energy of mass m_{1} after the collision to that before the collision is -
A. $\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2}$
B. $\left(\frac{m_{1}+m_{2}}{m_{1}+m_{2}}\right)^{2}$
C. $\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right)^{2}$
D. $\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right)^{2}$

Answer: A

D Watch Video Solution

5. A disc rotates about its aixs of symmetry in
a horizontal plane at a steady rate of 3.5
revolutions per second A coin placed at a distance fo 1.25 cm form the axis of ratation remains at rest on the disc The coefficient of
friction between the coin and the disc is :

$$
\left(g=10 / s^{2}\right)
$$

A. 0.5
B. 0.7
C. 0.3
D. 0.6

Answer: D
(Watch Video Solution
6. Which of the following statement related to
the hysteresis loop is incorrect?
A. The curve of B against H for a ferromagnetic material is called
hysteresis loop
B. The area of $\mathrm{B}-\mathrm{H}$ curve is a measure of
power dissipated per cycle per unit, area
of the specimen
C. Coactivity is a measure of the magnetic
field required to destroy the residual magnetism of ferromagnetic material

D. The retentively of a speciment is the measure of magnetic field remaining in

the speciment when the magnetising
field is removed

Answer: C

D Watch Video Solution

7. To verify Ohm's law, a student is provided with a test resistor R_{T}, a high resistance R_{1}, a small resistance R_{2}, two identical galvanometer G_{1} and G_{2}, and a variable voltage source V . The correct circuit to carry out the experiment is

Answer: B

D Watch Video Solution

8. In the circuit figure, the voltmeter reads 30

V . The resistance of the voltmeter is

A. 1200Ω
B. 700Ω
C. 400Ω
D. 300Ω

Answer: A

D Watch Video Solution
9. An emf of 15 V is applied in a circuit containing $5 H$ inductance and 10Ω resistance.

The ratio of the currents at time $t=\infty$ and $t=1 s$ is

$$
\begin{aligned}
& \text { A. } \frac{e^{1 / 2}}{e^{1 / 2}-1} \\
& \text { B. } \frac{e^{2}}{e^{2}-1} \\
& \text { C. } 1-e^{1} \\
& \text { D. } e^{-1}
\end{aligned}
$$

Answer: B
10. A straight wire of mass 200 g and length 1.5 m carries a current of 2 A . It is suspended in mid-air by a uniform horizontal magnetic field B. What is the magnitude of the magnetic field?

A. 0.65
B. 0.55
C. 0.75
D. 0.45

Answer: A

D Watch Video Solution

11. A mass of 1 kg carrying a charge of 2 C is accelerated through a potential of 1 V . The velocity acquired by it is
A. $\sqrt{2} m s^{-1}$
B. $2 m s^{-1}$

$$
\begin{aligned}
& \text { C. } \frac{1}{\sqrt{2}} m s^{-1} \\
& \text { D. } \frac{1}{2} m s^{-1}
\end{aligned}
$$

Answer: B

D Watch Video Solution

12. The magnetic field In a travelling electromagnetic wave has a peak value of
$20 n T$ The peak value of electric field strength is :

> A. $3 V m^{-1}$
> B. $6 V m^{-1}$
> C. $9 V m^{-1}$
> D. $12 V m^{-1}$

Answer: B
(Watch Video Solution
13. If a man weighs 90 kg on the surface of the earth, the height above the surface of the earth of radius, R where the weight is 30 kg is
A. 0.73 R
B. $\sqrt{3} R$
C. R
D. $2 R$

Answer: A

- Watch Video Solution

14. Two satellites A and B go around a planet in circular orbits of radii 4 R and R respectively. If the speed of the satellite A is 3 V , then the speed of the satellite B will be
A. 12 V
B. 6 V
C. $\frac{4}{3} V$
D. $\frac{3}{2} v$

Answer: B
15. The amount of heat energy radiated by a metal at temperature T is E. When the temperature is increased to $3 T$, energy radiated is
A. $81 E$
B. $9 E$
C. $3 E$
D. $27 E$

Answer: A

D Watch Video Solution

16. A thermally insulated container is divided
into two parts by a screen. In one part the pressure and temperature are P and T for an ideal gas filled. In the second part it is vacuum.

If now a small hole is created in the screen, then the temperature of the gas will
A. Decrease
B. Increase
C. Remain same
D. None of these

Answer: C

D Watch Video Solution

17. A Carnot engine, having an efficiency of
$\eta=\frac{1}{10}$ as heat engine, is used as a
refrigerator. If the work done on the system is

10 J , the amount of energy absorbed from the

reservoir at lower temperature is

A. 99 J
B. 100 J
C. 1 J
D. 90 J

Answer: D

D Watch Video Solution

18. A current carrying squre loop is placed near

an infinitely long current carrying wire as
shown in figure. The loop torque acting on
the loop is

A. $\frac{\mu_{0}}{2 \pi} i_{1} i_{2} r$
B. $\frac{\mu_{0}}{2 \pi} i_{1} i_{2} \log _{e} 2$
C. $\frac{\mu_{0}}{2 \pi} \frac{i_{1} i_{2} r}{2}$
D. Zero

Answer: D

D Watch Video Solution

19. The magnetic dipole moment of current loop is independent of
A. Magnetic field in which it is lying

B. Number of turns

C. Area of the loop
D. Current in the loop

Answer: A

- Watch Video Solution

20. A parachutist after bailing out falls 50 m
without friction. When parachute opens, it decelerates at $2 m / s^{2}$. He reaches the ground
with a speed of $3 \mathrm{~m} / \mathrm{s}$. At what height, did the

bail out?

A. 293 m
B. 111 m
C. 91 m
D. 182 m

Answer: A
(Watch Video Solution
21. A man throws a packet from a tower directly aiming at his friend who is standing at a certain distance from the base which is same as the height of the tower. If the packet is thrown with a speed of $4 m s^{-1}$ and it hits the ground midway between the tower base \& his friend than the height of the tower is $\left(g=10 m s^{-2}\right)$
A. 5 m
B. 8 m
C. 3.2 m

D. 13 m

Answer: C

D Watch Video Solution

22. Two masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are connected by massless flexible and inextensible string passed over massless and frictionless pulley. The acceleration of centre of mass is

$$
\text { A. }\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g
$$

$$
\begin{aligned}
& \text { B. } \frac{m_{1}-m_{2}}{m+1+m_{2}} g \\
& \text { C. } \frac{m_{1}+m_{2}}{m_{1}-m_{2}} g \\
& \text { D. Zero }
\end{aligned}
$$

Answer: A

D Watch Video Solution

23. A bomb of mass 30 kg at rest explodes into two pieces of mass 18 kg and 12 kg . The velocity of mass $18 \mathrm{kgis} 6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the other mass is
A. 324 J
B. 486 J
C. 256 J
D. 524 J

Answer: B

D Watch Video Solution

24. The energy released by fission of one U^{235} atom is 200 MeV . Calculate the energy
released in kWh , when one gram of uranium undergoes fission.

A. $2.270 \times 10^{4} k W h$
B. $2.278 \times 10^{4} k W h$
C. $2.268 \times 10^{2} k W h$
D. $2.288 \times 10^{4} k W h$

Answer: B

D Watch Video Solution
25. In a nuclear reactor, the fuel is consumed
at the rate of $1 \mathrm{mg} / \mathrm{s}$. The power generated in
kilowatt is.
A. 9×10^{4}
B. 9×10^{7}
C. 9×10^{8}
D. 9×10^{12}

Answer: B

D Watch Video Solution
26. The potential energy of a simple harmonic oscillator of mass 2 kg in its mean position is 5

J . If its total energy is 9 J and its amplitude is
0.01 m , its time period would be

> A. $\frac{\pi}{10} S$
> B. $\frac{\pi}{20} S$
> C. $\frac{\pi}{50} S$
> D. $\frac{\pi}{100} S$

Answer: D

27. A mass of 2.0 kg is put on a flat pan attached to a vertical spring fixed on the ground as shown in figure. The mass of the spring and the pan is negligible. When pressed slightly and realeased the mass executes a simple contant is $200 \mathrm{~N} / \mathrm{m}$. What should be the minimum amplitude of the motion, so that the mass gets the detached
from the pan? $\left(\right.$ Takeg $\left.=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. 8 cm

B. 10 cm

C. Any value less than 12 cm
D. 4 cm

Answer: B

D Watch Video Solution

28. The electric field of certain radiation is
given
by
the
equation
$E=200\left\{\sin \left(4 \pi \times 10^{10}\right) t+\sin \left(4 \pi \times 10^{15}\right) t\right\}$
falls in a metal surface having work function
2.0 eV . The maximum kinetic energy 2.0 eV . The maximum kinetic energy (in eV) of the photoelectrons is [Plank's constant $(h)=6.63 \times 10^{-34} J s$ and electron charge $\left.e=1.6 \times 10^{-19} C\right]$
A. 3.3
B. 4.3
C. 5.3
D. 6.3

Answer: D
29. A proton and an α-particle are accelerated through same potential difference. Find the ratio of their de-Brogile wavelength.
A. $2 \sqrt{2}$
B. $2 \sqrt{2}$
C. $\sqrt{3}$
D. $2 \sqrt{3}$
30. An object of mass 26 kg floats in the air and it is in the equilibrium state.Air density is $1.3 \mathrm{kgm}^{-3}$. The volume of the object is
A. $10 m^{3}$
B. $20 m^{3}$
C. $13 m^{3}$
D. $26 m^{3}$
31. An air tight cage with are parrot sitting in
it is suspended from the spring balance. The parrot starts flying. The reading of the spring balance will
A. increase
B. Decrease
C. Not change
D. Be zero

Answer: C

- Watch Video Solution

32. An object is placed at a distance 20 cm
from the pole of a convex mirror of focal
length 20 cm . The image is produced at
A. 13.3 cm
B. 20 cm
C. 25 cm
D. 10 cm

Answer: D

D Watch Video Solution

33. A transparent plastic bag filled with air forms a concave lens. Now, if this bag is completely immersed in water, then it behaves as
A. Divergent lens
B. Convergent lens
C. Equilateral prism

D. Rectangular slab

Answer: B

D Watch Video Solution

34. A uniform rod of mass m and length L is at
rest on a smooth horizontal surface. A ball of
mass m , moving with velocity v_{0}, hits the rod perpendicularly at its one end and sticks to it.

The angular velocity of rod after collision is

A. $\frac{6 v_{0}}{5 L}$
B. $\frac{12 v_{0}}{5 L}$
C. $\frac{2 v_{0}}{5 L}$
D. $\frac{3 v_{0}}{7 L}$

- Watch Video Solution

35. A disc is performing pure rolling on a smooth stationary surface with constant angular velocity as shown in Fig, At any instant, for the lower most point of the disc,

A. Velocity is v, acceleration is zero
B. Velocity is zero, acceleration is zero
C. Velocity is v , acceleration is $\frac{v^{2}}{R}$
D. Velocity is zero, acceleration is nonzero

Answer: D

D Watch Video Solution

36. In an unbiased p-n junction electrons
diffuse from n-region to p-region because :-
A. electrons travel across the junction due to potential difference
B. only electrons move from n to p region and not the vice-versa
C. electron concentration in n-region is
more as compared to that in p-region
D. holes in p -region attract them

Answer: C

37. Select the correct output Y

A. $A . B$
B. $A+B$
C. $A \cdot \bar{B}+B \cdot \bar{A}$
D. $A \cdot B+\bar{A} \cdot \bar{B}$

Answer: C
38. To what temperature should the hydrogen
at $327^{\circ} \mathrm{C}$ be cooled at constant pressure, so
that the root mean square velocity of its
molecules become half of its previous value?
A. $-123^{\circ} C$
B. $123^{\circ} C$
C. $-100^{\circ} C$
D. $0^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

39. A physical quantity x is calculated from the relation $x=\frac{a^{2} b^{3}}{c \sqrt{d}}$. If the percentage error in a, b, c, and $\operatorname{dare} 2 \%, 1 \%, 3 \%$, and 4%, respectively, what is the percentage error in x ?
A. $\pm 11 \%$
B. $\pm 13 \%$
C. $\pm 12 \%$
D. $\pm 14 \%$

Answer: C

D Watch Video Solution

40. A double-slit experiment is immersed in a
liquid of refractive index 1.33. The separation between the slits is 1 mm and the distance between the slits and screen is 1.33 m . If slits are illuminated by a parallel beam of light
whose wavelength is $6300 \AA$, then fringe width will be
A. 6.3 mm
B. 63 mm
C. 0.63 mm
D. None of these

Answer: C
(Watch Video Solution
41. What is the width of a single slit if the first minimum is observed at an angle 2° with a light of wavelength $9680 \AA$?
A. 0.2 mm
B. $2 \times 10^{-2} \mathrm{~mm}$
C. $2 \times 10^{5} \mathrm{~mm}$
D. $2 m m$

Answer: B

D Watch Video Solution
42. A Uniform rope having mass m hags
vertically from a rigid support. A transverse wave pulse is produced at the lower end. The speed v of wave pulse varies with height h from the lower end as

C.

Answer: A

D Watch Video Solution

43. On producing the waves of frequency 1000

Hz in a kundt's tube the total distance between 6 successive nodes n 85 cm . Speed of sound in the gas filled in the tude is
A. $300 m s^{-1}$
B. $350 m s^{-1}$
C. $340 m s^{-1}$
D. $330 \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

44. An inclined track ends in a circular loop of
radius r. From what height on the track a particle should be released so that it
completes the loop, assuming there is no

friction?

A. $\frac{r}{2}$
B. $\frac{3 r}{2}$
C. $2 r$
D. $\frac{5 r}{2}$

Answer: D
(Watch Video Solution
45. A block of mass 2 kg is kept at origin at $\mathrm{t}=$ 0 and is having velocity $4 \sqrt{5} \mathrm{~m} / \mathrm{s}$ in positive x

- direction. The only force on it is a conservative and its potential energy is defined as $U=-x^{3}+6 x^{2}+15$ (SI units).

Its velocity when the force acting on it is minimum (after the time $t=0$) is
A. $8 m s^{-1}$
B. $4 m s^{-1}$
C. $\sqrt{24} m s^{-1}$
D. $20 m s^{-1}$

Answer: A

D Watch Video Solution

