©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 110

Physics

1. The radius of hydrogen atom in its ground
state is $5.3 \times 10^{-11} m$. After collision with an
electron it is found to have a radius of
$21.2 \times 10^{-11} \mathrm{~m}$. What is the principle quantum number of n of the final state of the atom?
A. $n=4$
B. $\mathrm{n}=2$
C. $\mathrm{n}=16$
D. $\mathrm{n}=3$

Answer: B

D Watch Video Solution
2. An electron is moving in an orbit of a hydrogen atom from which there can be a maximum of six transition. An which there can
be a maximum of three transition. Find ratio of the velocities of the electron in these two orbits.
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{5}{4}$
D. $\frac{3}{4}$

Answer: D

D Watch Video Solution

3. Three identical spheres of mass M each are placed at the corners of an equilateral triangle of side 2 m . Taking one of the corners as the origin, the position vector of the centre of mass is

$$
\begin{aligned}
& \text { A. } \sqrt{3}(\hat{i}-\hat{j}) \\
& \text { B. } \frac{\hat{i}}{\sqrt{3}}+\hat{j}
\end{aligned}
$$

C. $\frac{\hat{i}+\hat{j}}{3}$
D. $\hat{i}+\frac{\hat{j}}{\sqrt{3}}$

Answer: D

D Watch Video Solution

4. A solid cube of the edge a is molten and moulded in eight identical small solid cubes
and are placed on one other on a straight line
with the edge of the bottom cube on the same
horizontal plane on which big cube was placed
, then the vertical shift in the centre of mass is
A. $\frac{3 a}{2}$
B. $2 a$
C. $\frac{5 a}{2}$
D. $3 a$

Answer: A
(Watch Video Solution
5. A disc initially at rest, is rotated about its
axis with uniform angular acceleration. In the
first 2 s , it rotates an angle θ. In the next 2 s ,
the disc rotates through an angle
A. θ
B. 2θ
C. 3θ
D. 4θ

Answer: C
6. If the magnetic dipole of moment of an atom of diamagnetic material, paramagnetic material and ferromagnetic material are donated by μ_{d}, μ_{p} and μ_{f} respectively, then:

> A. $\mu_{d}=0$ and $\mu_{p} \neq 0$
> B. $\mu_{p} \neq 0$ and $\mu_{p}=0$
> C. $\mu_{p}=0$ and $\mu_{f} \neq 0$
> D. $\mu_{d} \neq$ and $\mu_{f} \neq 0$

Answer: A

D Watch Video Solution

7. Thirteen resistances each of resistance R
ohm are connected in the circuit as shown in
the figure below. The effective resistance
between A and B is

A. $R \Omega$
B. $\frac{2 R}{3} \Omega$
c. $\frac{4 R}{3} \Omega$

D. $2 R \Omega$

Answer: B

D Watch Video Solution

8. In the circuit diagram shown in figure, the potentials of the points B, C and D are
respectively.

A. $12 \mathrm{~V}, 10 \mathrm{~V}, 6 \mathrm{~V}$
B. $11 \mathrm{~V}, 9 \mathrm{~V}, 6 \mathrm{~V}$
C. $11 \mathrm{~V}, 9 \mathrm{~V}, 0 \mathrm{~V}$
D. $12 \mathrm{~V}, 10 \mathrm{~V}, 0 \mathrm{~V}$

Answer: B

D Watch Video Solution

9. An inductor coil and a capacitor and a resistance of 5Ω are connected in series to an
a.c. source of rms voltage 30 V . When the frequency of the source is varied, a maximum r.m.s. current of 5 A is observed. If this inductor is connected in parallel with a resistance 5Ω to a battery of emf 25 V and
internal resistance 2.0Ω, the current drawn

from the battery is

> A. $\frac{150}{17} A$
> B. $2.5 A$
> C. $\frac{125}{33} A$
> D. $\frac{125}{99} A$

Answer: A
(Watch Video Solution
10. A metallic square loop $A B C D$ is moving in
its own plane with velocity v in a uniform magnetic field perpendicular to its plane as shown in the figure. An electric field is induced

A. In AD, But not in BC
B. In $B C$, But not in AD
C. Neither in AD nor in BC
D. In both $A D$ and $B C$

Answer: D

D Watch Video Solution

11. Two bodies A and B of definite shape are
placed near one another. Electrostaitc
attraction is found between the bodies, then
A. Both bodies must be positively charged
B. Both bodies must be negatively charged
C. Both bodies must be oppestively charged
D. Both A may be neutral

Answer: D

D Watch Video Solution

12. The insulated spheres of radii R_{1} and R_{2}
having charges Q_{1} and Q_{2} respectively are connected to each other. There is
A. no change in the energy of the system
B. an increases in the energy of the system
C. always a decrease in the energy of the
system
D. a decrease in energy of the system
unless $Q_{1} R_{2}=Q_{2} R_{1}$

Answer: D

D Watch Video Solution

13. Two planets A and B have the same averge density. Their radii R_{A} and R_{B} are such that
$R_{A}: R_{B}=3: 1$. If g_{A} and g_{B} are the acceleration due to gravity at the surfaces of the planets, the $g_{A}: g_{B}$ equals
A. $3: 1$
B. $1: 3$
C. 1:9
D. $\sqrt{3}: 1$

- Watch Video Solution

14. Gravitational force acts on a particle due to
fixed uniform solid sphere. Neglect other forces. Then particle
A.always moves normal to the radial direction.
B. always moves in the radial direction only
C. always moves in circular orbit

D. experiences a force directed along the

 radial direction only.
Answer: D

D Watch Video Solution

15. There are two thin spheres A and B of the same material and same thickness. They behave like black bodies, Radius of A is double that of B and Both have same temperature T.

When A and B are kept in a room of
temperature $T_{0}(<T)$, the ratio of their rates
of cooling is (assume negligible heat exchange
between A and B).
A. 2:1
B. $1: 1$
C. $4: 1$
D. $8: 1$

Answer: B

D Watch Video Solution
16. if quantity of heat 1163.4 J supplied to one mole of nitrogen gas , at room temperature at constant pressure , then the rise in temperature is
A. 54 K
B. 28 K
C. 65 K
D. 40 K

Answer: D

- Watch Video Solution

17. One mole of an ideal monatomic gas at temperature T_{0} expands slowly according to
the law $P=k V$ (k is constant). If the final
temperature is $4 T_{0}$ then heat supplied to gas
is
A. $2 R T_{0}$
B. $\frac{3}{2} R T_{0}$
C. $6 R T_{0}$

$$
\text { D. } \frac{R T_{0}}{2}
$$

Answer: C

D Watch Video Solution

18. Two particle X and Y having equal charge,
after being accelerated through the same potential difference enter a region of uniform magnetic field and describe circular paths of radii R_{1} and R_{2} respectively. The ratio of the mass of X to that of Y is
A. $\frac{r_{1}}{r_{2}}$
B. $\sqrt{\frac{r_{1}}{r_{2}}}$
C. $\left[\frac{r_{2}}{r_{1}}\right]^{2}$
D. $\left[\frac{r_{1}}{r_{2}}\right]^{2}$

Answer: D

D Watch Video Solution

19. A proton and a deuteron with the same initial kinetic energy enter a magnetic field in a direction perpendicular to the direction of the
field.The ratio of the radii of the circular trajectories described by them is
A. $1: 4$
B. $1: \sqrt{2}$
C. $1: 1$
D. 1:2

Answer: B
(Watch Video Solution
20. A jogger running at 9 kmph alongside a railway track is 240 metres ahead of the engine of a 120 metre long train running at 45 kmph in the same direction. In how much time will the train pass the jogger? 3.6 sec b . 36 sec c. 18 sec d. 72 sec
A. 3.6 s
B. 18 s
C. 36 s
D. 72 s

Answer: C

D Watch Video Solution

21. Rain, driven by the wind, falls on a railway
compartment with a velocity of $20 m s^{-1}$, at an angle of 30° to the vertical. The train moves, along the direction of wind flow, at a speed of
$108 \mathrm{kmh}^{-1}$. Determine the apparent velocity of rain for a person sitting in the train.
A. $20 \sqrt{7} m s^{-1}$
B. $10 \sqrt{7} m s^{-1}$
C. $15 \sqrt{7} m s^{-1}$
D. $10 \sqrt{7} k m h^{-1}$

Answer: B

D Watch Video Solution

22. A man of 50 kg is standing at one end on a boat of length 25 m and mass 200 kg .If he starts running and when he reaches the other
end, has a velocity $2 m s^{-1}$ with respect to the boat.The final velocity of the boat is

> A. $\frac{2}{5}$
> B. $\frac{2}{3}$
> C. $\frac{8}{5}$
> D. $\frac{8}{5}$

Answer: A
(Watch Video Solution
23. The rear side of a truck is open and a box of 40 kg mass is placed 5 m from the open end

The coefficient of friction between the box and
the surface below it is 0.15 On a straight road
the truck starts from rest and accelerates with
$2 m / s^{2}$ At what distance from the starting point does the box fall off the truck ? Ignore the size of the box .
A. 20 m
B. 30 m
C. 40 m

D. 50 m

Answer: A

D Watch Video Solution

24. An alpha particle of energy $5 M e V$ is scattered through 180° by a found uramiam nucleus . The distance of closest approach is of the order of

$$
\text { A. } 5.3 \times 10^{-12} m
$$

B. $5.3 \times 10^{-13} m$
C. $5.3 \times 10^{-14} m$
D. $5.3 \times 10^{-15} m$

Answer: C

- Watch Video Solution

25. The fraction of atoms of radioactive element that decays in 6 days is $7 / 8$. the fraction that decays in 10 days will be
A. $\frac{77}{80}$
B. $\frac{71}{80}$
C. $\frac{31}{32}$
D. $\frac{15}{16}$

Answer: C

D Watch Video Solution

26. The kinetic energy of a particle executing SHM is 16 J . When it is in its mean position. If
the amplitude of oscillation is 25 cm and the
mass of the particle is 5.12 kg , the time period

of its oscillation in second is

A. $20 \pi s$
B. $2 \pi s$
C. $\pi / 5 s$
D. $5 \pi s$

Answer: C
(Watch Video Solution
27. The amplitude of a simple pendulum is 10
cm . When the pendulum is at a displacement of 4 cm from the mean position, the ratio of kinetic and potential energies at that point is
A. 5.25
B. 2.5
C. 4.5
D. 7.5

Answer: A
28. A photon of light enters a block of glass after travelling through vacuum. The energy of the photon on entering the glass block
A. Increases because its associated
wavelength decreases
B. Decreases because the speed of the radiation decreases
C. The same because the speed of radiation
and the associated wavelength do not
change

D. The same because the frequency of the

 radiation does not change
Answer: D

D Watch Video Solution

29. A parallel beam of light is incident normally on a plane surface absorbing 40% of the light and reflecting the rest. If the incident beam
carries 60 W of power, the force exerted by it on the surface is

> А. $3.2 \times 10^{-8} N$
> B. $3.2 \times 10^{-7} N$
> C. $5.12 \times 10^{-7} N$
> D. $5.12 \times 10^{-8} N$

Answer: B
(Watch Video Solution
30. There is a hole at the bottom of a large open vessel. If water is filled upto a height h, it
flows out in time t . if water is filled to a height 4h, it will flow out in time
A. 2 t
B. 4 t
C. 16 t
D. None of these

Answer: A
31. A vertical tube of length 100 cm contains a mercury pallet of length 5 cm as shown in the
figure. The length of the tube above mercury pallet if the tube is inverted is nearly:
(atmospheric pressure $=75 \mathrm{~cm} \mathrm{Hg}$ of Hg)

A. 56 cm
B. 57 cm
C. 60 cm
D. 50 cm

Answer: B

D Watch Video Solution

32. Two points p and Q lie on either side of an
axis $X Y$ as shown. It is desired to produce an
image of p at Q using a spherical mirror, with

XY as the optic axis. The mirror must be

-Q
A. Converging and positioned to the left of
p
B. Diverging and positioned to the left of p
C. Converging and positioned to the right of Q
D. Diverging and positioned to the right of

Q

Answer: A

D Watch Video Solution

33. A compound microscope having magnifying power 35 with its eye - piece of focal length 10 cm . Assume that the final image is at least distance of distinct vision then the magnification produced by the objective is
A. -4
B. 5
C. 10
D. -10

Answer: D

D Watch Video Solution

34. If the earth shrinks such that its mass does not change but radius decreases to onequarter of its original value then one complete day will take
A. 96 h
B. 48 h
C. 6 h
D. 1.5 h

Answer: D

D Watch Video Solution

35. A particle of mass m moves in the $X Y$ plane with a velocity v along the straight line
$A B$. If the angular momentum of the particle
with respect to origin O is L_{A} when it is at A
and L_{B} when it is at B , then

A. $L_{A}>L_{B}$
B. $L_{A}=L_{B}$
C. The relationship between L_{A} and L_{B}
depends upon the slope of the line $A B$

D. $L_{A}<L_{B}$

Answer: B

D Watch Video Solution

36. Two identical capacitors A and B are charged to the same potential V and are connected in two circuits at $\mathrm{t}=0$ as shown in
figure. The charge of the capacitors at a time t
= CR are respectively -

A. VC, VC
B. $\frac{V C}{e}, V C$
C. $V C, \frac{V C}{e}$
D. $\frac{V C}{e}, \frac{V C}{e}$

Answer: B
37. A charge of 8.0 mA in the emitter current brings a charge of 7.9 mA in the collector current. The values of α and β are
A. $0.99,90$
B. $0.96,79$
C. $0.97,99$
D. $0.99,79$

Answer: D
38. A bubble is at the bottom of the lake of depth h. As the bubble comes to sea level, its
radius increases three times. If atmospheric pressure is equal to I metre of water column, then h is equal to
A. 261
B. I
C. 25 I
D. 301

- Watch Video Solution

39. Choose the wrong statement for zero error and zero correction.
A. If the zero of the vernier scale does not
coincide with the zero of the main scale
then the instrument is said to be having
a zero error.
B. Zero correction has a magnitude equal
to zero error but sign is opposite to that
of the zero error.
C. Zero error is positive when the zero of
vernier scale lies to the left of the zero
of the main scale.
D. Zero error is negative when the zero of
vernier scale lies to the left of zero of
main scale

Answer: C
40. Consider an interference pattern between two coherent sources. If I_{1} and I_{2} be intensities at points where the phase difference are $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$ and respectively, then the intensity at maxima is
A. $\frac{I_{2}-3 I_{1}}{2}$
B. $\frac{I_{1}-3 I_{2}}{2}$
c. $\frac{3 I_{2}+I_{1}}{2}$
D. $\frac{3 I_{1}-I_{2}}{2}$

Answer: D

D Watch Video Solution

41. If a torch is used in place of monochromatic light in Young's experiment what will happen?
A. Fringe will appear for a moment then, it
B. Fringes will occur as from
monochromatic light
C. Only bright fringes will appear
D. No fringes will appear

Answer: D

D Watch Video Solution

42. Two strings A and B of lengths,
$L_{A}=80 \mathrm{~cm}$ and $L_{B}=x \mathrm{~cm}$ respectively are
used separately in a sonometer. The ratio of
their densities $\left(d_{A} / d_{B}\right)$ is 0.81 . The diameter of B is one -half that of A. If the strings have
the same tension and fundamental frequency the value of x is
A. 33
B. 102
C. 144
D. 130

Answer: C

43. A string of density $7.5 \mathrm{gcm}^{-3}$ and area of cross - section $0.2 \mathrm{~mm}^{2}$ is stretched under a tension of 20 N . When it is plucked at the midpoint, the speed of the transverse wave on the wire is

> A. $116 m s^{-1}$
> B. $40 m s^{-1}$
> C. $200 \mathrm{~ms}^{-1}$
> D. $5900 \mathrm{~ms}^{-1}$

Answer: A

D Watch Video Solution

44. A small bead of mass M slides on a smooth
wire that is bent in a circle of radius R. It is
released at the top of the circular part of the
wire (point A in the figure) with a negligibly
small velocity. Find the height H where the
bead will reverse direction

A. R
B. 2 R
C. $\frac{3 R}{2}$
D. $\frac{5 R}{2}$

Answer: B
45. The potential energy for a force filed \vec{F} is given by $U(x, y)=\cos (x+y)$. The force acting on a particle at position given by coordinates $(0, \pi / 4)$ is

$$
\begin{aligned}
& \text { A. }-\frac{1}{\sqrt{2}}(\hat{i}+\hat{j}) \\
& \text { B. } \frac{1}{\sqrt{2}}(\hat{i}+\hat{j}) \\
& \text { C. }\left(\frac{1}{2} \hat{i}+\frac{\sqrt{3}}{2} \hat{j}\right) \\
& \text { D. }\left(\frac{1}{2} \hat{i}-\frac{\sqrt{3}}{2} \hat{j}\right)
\end{aligned}
$$

Watch Video Solution

