©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 115

Physics

1. The energy (in eV) required to excite an
electron from $n=2$ to $n=4$ state in
hydrogen atom is
A. -0.85
B. +4.25
C. -3.4
D. +2.55

Answer: D

D Watch Video Solution

2. A sample of hydrogen gas in its ground state is irradiated with photons of 10.02 eV energies. The radiation from the above sample
is used to irradiate two other sample of excited ionized He^{+}and excited ionized Li^{2+} , respectively. Both the ionized samples absorb the incident radiation.

How many spectral lines are obtained in the spectra of $L i^{2+}$?
A. 10
B. 15
C. 20
D. 17

- Watch Video Solution

3. A gun (mass=M) fires a bullet (mass=m) with speed v_{r} relative to barrel of the gun which is inclined at an angle of 60° with horizontal.

The gun is placed over a smooth horizontal surface. Find the recoil speed of gun.

$$
\begin{aligned}
& \text { A. } V=\frac{1}{2} \frac{m V_{r}}{(m+M)} \\
& \text { B. } V=\frac{1}{2} \frac{m V_{r}}{(m+M)} \\
& \text { C. } V=\frac{1}{2} \frac{m V_{r}}{(m-M)}
\end{aligned}
$$

D. None of these above

Answer: A

D Watch Video Solution

4. A spherical ball A of mass 4 kg , moving along a straight line strikes another spherical ball B of mass 1 kg at rest. After the collision, A and B move with velocities
$v_{1} m s^{-1}$ and $v_{2} m s^{-1}$ respectively making angles of 30° and 60° with respect to the
original direction of motion of A . The ratio $\frac{v_{1}}{v_{1}}$
will be
A. $\frac{\sqrt{3}}{4}$
B. $\frac{4}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: A
(Watch Video Solution
5. A particle moves along a circle of radius r with constant tangential acceleration. If the velocity of the particle is v at the end of second revolution, after the revolution has started, then the tangential acceleration is
A. $\frac{v^{2}}{8 \pi r}$
B. $\frac{v^{2}}{6 \pi r}$
C. $\frac{v^{2}}{4 \pi r}$
D. $\frac{v^{2}}{10 \pi r}$

Answer: A
6. A magnet of magnetic moment $10 \mathrm{Am}^{2}$ has magnetic length 5 cm .The strength of magnet is
A. 200 A m
B. 100 Am
C. 300 Am
D. 50 Am

7. A $100 W$ bulb is connected to an AC source

 of $220 \mathrm{~V}, 50 \mathrm{~Hz}$. Then the current flowing through the bulb is> A. $\frac{5}{11} A$
> B. $\frac{1}{2} A$
> C. $2 A$
> D. $\frac{3}{4} A$
8. in the following network, the potential at O
is

A. $4 V$
B. 3 V
C. 6 V
D. 4.8 V

Answer: D

- Watch Video Solution

9. An $L C R$ circuit contains
$R=50 \Omega, L=1 \mathrm{mH}$ and $C=0.1 \mu F$. The
impedence of the circuit will be minimum for a
frequency of
A. $\frac{10^{5}}{2 \pi} H z$
B. $\frac{10^{5}}{2 \pi} H z$
C. $2 \pi \times 10^{5} \mathrm{~Hz}$
D. $2 \pi \times 10^{6} \mathrm{~Hz}$

Answer: A

D Watch Video Solution
10. An Ac source of volatage $\mathrm{V}=100 \sin 100 \pi t$ is connected to a resistor of resistance 20Ω.The
rms value of current through resistor is , power factor is
A. 10 A
B. $\frac{10}{\sqrt{2}} A$
C. $\frac{5}{\sqrt{2}} A$
D. None of these

Answer: C

- Watch Video Solution

11. The capacitance of a parallel plate capacitor
is $2 \mu F$ and the charge on its positive plate is
$2 \mu C$. If the charge on its plates is doubled, the capacitance of the capacitor
A. remains $2 \mu F$
B. becomes $1 \mu F$
C. becomes $4 \mu F$
D. data insufficient

Answer: A
12. Two capacitors of capacitance C are connected in series. If one of them is filled with dielectric substance K , what is the effective capacitance?
A. $\frac{K C}{(1+K)}$
B. $C(K+1)$
C. $\frac{2 K C}{(1+K)}$
D. None of these

Answer: A

D Watch Video Solution

13. An artificial satellite is moving in a circular orbit around the earth with a speed equal to
half the magnitude of escape velocity from the earth. The height of the satellite above the surface of the earth is x R. Find the value of x.
A. R
B. 2 R

C. 3 R

D. 4 R

Answer: A

D Watch Video Solution

14. Variation of acceleration due to gravity (g)
with distance x from the centre of the Earth is
best represented by $(R \rightarrow$ Radius of the Earth)

A.

D

Answer: D

- Watch Video Solution

15. The rates of heat radiation from two patches of skin each of area A on a patient's chest differ by 2% If the patch of the lower temp is at $300 K$ and emissivity of both the patches is assumed to be unity, the temp of other patch would be .
A. 306 K
B. 312 K
C. 308.5 K
D. 301.5 K

Answer: D

D Watch Video Solution

16. A Carnot engine whose low-temperature reservoir is at 350 K has efficiency of 50%. It is desired to increase this to 60%. It the temperature of the low-temperature reservoir remains constant, then the temperature reservoir remains constant, then the temperature of the high-temperature
reservoir must be increased by how many degrees?
A. 15
B. 175
C. 100
D. 50

Answer: B
(Watch Video Solution
17. One mole of monoatomic gas is taken
round the cyclic process. Heat absorbed by gas
in process $A B$ is
SP
A. $2.5 P_{0} V_{0}$
B. $3 P_{0} V_{0}$
C. $3.5 P_{0} V_{0}$

$$
\text { D. } 4.5 P_{0} V_{0}
$$

Answer: B

D Watch Video Solution

18. A wire of length 100 m is tightly wounded
on a hollow tube of radius 5 mm and length

1 m . A current of 1 A is flowing in the wire. Then magnetic field strength inside the tube will be
A. 4 T
B. 4 mT
C. 40 mT
D. 40 T

Answer: B

- Watch Video Solution

19. A current carrying circular coil is bent so as
to convert it into a double loop, both the
loops being concentric and are carrying
current in the same direction. If B is the initial magnetic field at the centre, the final magnetic
field at the centre will be
A. zero
B. B
C. 2 B
D. 4 B

Answer: D

D Watch Video Solution
20. The displacement -time ($x-t$) graph of a body is given as

The corresponding velocity -time (v-t) graph will be
A.

B.

Answer: D

D Watch Video Solution

21. An inclined plane making an angle β with
horizontal. A projectile projected from the bottom of the plane with a speed u at angle α
with horizontal, then its maximum range $R_{\max }$
is

$$
\begin{aligned}
& \text { A. } R_{\max }=\frac{u^{2}}{g(1-\sin \beta)} \\
& \text { B. } R_{\max }=\frac{u^{2}}{g(1+\sin \beta)} \\
& \text { C. } R_{\max }=\frac{u^{2}}{g(1-\sin \beta)} \\
& \text { D. } R_{\max }=\frac{u^{2}}{g(1+\sin \beta)}
\end{aligned}
$$

Answer: B

D Watch Video Solution

22. A boy of mass 50 kg is climbing a vertical pole at a constant speed. If coefficient of fricition between his palms and the pole is 0.75 , then the normal reaction between him and the pole is (take $=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 700 N
B. 625.67 N
C. 550 N
D. 666.67 N

Answer: D

- Watch Video Solution

23. A person observes that the full length of a train subtends an angle of 15°. If the distance between the train and the person is 3 km , the length of the train, calculate using the parallax method, in meters is
A. 45
B. 45π
C. 250π
D. 75π

Answer: C

D Watch Video Solution

24. A nucleus is bombarded with a high-speed
neutron so that resulting nucleus is a
radioactive one. This phenomenon is called
A. Artificial radioactivity
B. Fusion

C. Fission

D. Radioactivity

Answer: C

- Watch Video Solution

25. ${ }_{92} \mathrm{U}^{235}$
undergoes
successive
disintegrations with the end product of
${ }_{82} \mathrm{~Pb}^{203}$. The number of α and β particles
emitted are
A. $\alpha=6, \beta=4$
B. $\alpha=6, \beta=0$
C. $\alpha=8, \beta=6$
D. $\alpha=3, \beta=3$

Answer: C

- Watch Video Solution

26. A man measures the period of a simple pendulum inside a stationary lift and find it be
T. If the lift accelerates downwards with an
acceleration of $g / 3$, then the period of the pendulum will be
A. $\sqrt{\frac{2}{3}} T$
B. $\sqrt{\frac{3}{2}} T$
C. $T \sqrt{3}$
D. $\frac{T}{\sqrt{3}}$

Answer: B

D Watch Video Solution
27. A simple pendulum of length 'L' has mass
' M ' and it oscillates freely with amplitude energy is
($\mathrm{g}=$ acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{M g A^{2}}{2 L} \\
& \text { B. } \frac{M g A}{2 L} \\
& \text { C. } \frac{M g A^{2}}{L} \\
& \text { D. } \frac{2 M g A^{2}}{L}
\end{aligned}
$$

Answer: A

28. A radiation of energy E falls normally on a perfctly refelecting surface . The momentum transferred to the surface is

> A. $\frac{E}{c}$
> B. $\frac{2 E}{c}$
C. $E c$
D. $\frac{E}{c^{2}}$

Answer: B
29. A hydrogen-like atom emits rediation of frequency $2.7 \times 10^{15} \mathrm{~Hz}$ when if makes a transition from $n=2 \rightarrow n=1$. The
frequency emitted in a transition from $n=3 \rightarrow n=1$ will be
A. $3.2 \times 10^{15} \mathrm{~Hz}$
B. $32 \times 10^{15} \mathrm{~Hz}$
C. $1.6 \times 10^{15} \mathrm{~Hz}$
D. $16 \times 10^{15} \mathrm{~Hz}$

Answer: A

- Watch Video Solution

30. A stream of non-viscous liquid emerges
from a very short outlet tube at the base of a
large. Open tank, in which the depth of liquid is h. The tube is at a fixed angle θ to the ground as shown in the figure. The maximum
height of the stream y is

A. $h \sin ^{2} \theta$
B. $h \sin 2 \theta$
C. $\frac{1}{2} h \sin \theta$
D. $h \tan ^{2} \theta$

Answer: A

- Watch Video Solution

31. A cylindrical vessel contains a liquid of density ρ up to height h. The liquid is closed by a piston of mass m and area of cross section A. There is a small hole at the bottom of the vessel. The speed v with which the
liquid comes out of the hole is

A. $\sqrt{2 g h}$
B. $\sqrt{2\left(g h+\frac{m g}{\rho A}\right)}$
C. $\sqrt{2\left(g h+\frac{m g}{A}\right)}$
D. $\sqrt{2 g h+\frac{m g}{A}}$

Answer: B

D Watch Video Solution

32. A biconvex lens of focal length 15 cm is in
front of a plane mirror. The distance between
the lens and the mirror is 10 cm . A small object is kept at a distance of 30 cm from the lens.

The final image is
A. Virtual and at a distance of 16 cm from
the mirror
B. Real and at a distance of 16 cm from the mirror
C. Virtual and at the distance of 20 cm
from the mirror
D. None of the above

Answer: B

- Watch Video Solution

33. A plane glass is placed over a various coloured letters (Violet, green, yellow ,red).

The letter which appears to be raised more is
A. Red
B. Yellow
C. Green
D. Violet

Answer: D

D Watch Video Solution
34. A cylinder rolls down an inclined plane of inclination 30°, the acceleration of cylinder is
A. $\frac{g}{3}$
B. g
C. $\frac{g}{2}$
D. $\frac{2 g}{3}$

Answer: A
(Watch Video Solution
35. A solid cylinder of mass 20 kg rotates about its axis with angular velocity of 100 radian s^{-1}
. The radius of the cylinder is 0.25 m . The magnitude of the angular momentum of the cylinder about its axis of rotation is
A. 62.6 J s
B. 70.4 J s
C. 79.6 J s
D. 60.5 J s

Answer: A
36. In an semiconductor the separation between conduction band and valence band is of the order of
A. OeV
B. 1 eV
C. 10 eV
D. 50 eV

- Watch Video Solution

37. In a common emitter transistor amplifier, the output resistance is $500 K \Omega$ and the current gain $\beta=49$. If the power gain of the amplifier is 5×10^{6}, the input resistance is
A. 165Ω
B. 198Ω
C. 225Ω
D. 240Ω

Answer: D

D Watch Video Solution

38. A steel wire, of uniform area $2 m m^{2}$, is heated up to $50^{\circ} \mathrm{C}$ and is stretched by tying
its ends rigidly. The change in tension, when the temperature falls from $50^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ is
(Take

$$
\left.Y=2 \times 10^{11} \mathrm{Nm}^{-2}, \alpha=1.1 \times 10^{-5^{\circ} \mathrm{C}-1}\right)
$$

A. $1.5 \times 10^{10} N$
B. $5 N$
C. $88 N$
D. $2.5 \times 10^{10} N$

Answer: C

- Watch Video Solution

39. The number of significant figures in 45056 is
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

40. Four sound sources produce the following four waves
(i) $y_{1}=a \sin \left(\omega t+\phi_{1}\right)$
(ii) $y_{2}=a \sin 2 \omega t$
(iii) $y_{3}=a^{\prime} \sin \left(\omega t+\phi_{2}\right)$
(iv) $y_{4}=a^{\prime} \sin (3 \omega t+\phi)$

Superposition of which two waves gives rise to interference?
A. (i) and (ii)
B. (ii) and (iii)
C. (i) and (iii)
D. (iii) and (iv)

Answer: C

41. In a Young's double slit experiment, the fringe width is found to be 0.4 mm . If the whole apparatus is immersed in water of refractive index $4 / 3$ without disturbing the geometrical arrangement, the new fringe width will be
A. 0.30 mm
B. 0.40 mm
C. 0.53 mm
D. 450 microns

Answer: A

- Watch Video Solution

42. Beats are produced when two progressive waves of frequency 256 Hz and 260 Hz superpose. Then the resultant amplitude change periodically with frequency of
A. 256 Hz
B. 260 Hz
C. $\frac{256-260}{2} H z$
D. 4 Hz

Answer: D

D Watch Video Solution

43. The equation of a progressive wave can be given by $\mathrm{Y}=15 \sin (660 \pi t-0.02 \pi x) \mathrm{cm}$. The
frequency of the wave is
A. 330 Hz
B. 342 Hz

C. 365 Hz

D. 660 Hz

Answer: A

D Watch Video Solution

44. A 0.5 kg block slides from the point A on a horizontal track with an initial speed $3 \mathrm{~m} / \mathrm{s}$ towards a weightless horizontal spring of length $1 m$ and force constant $2 N / m$. The part $A B$ of the track is frictionless and the part

BC has the coefficient of static and kinetic friction as ' 0.22 ' and 0.20 respectively. If the distances $A B$ and $B D$ are $2 m$ and $2.14 m$ respectively, find total distance through which
the block moves before it comes to rest completely. ${ }^{`}\left(\mathrm{~g}=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)$.
A. 2.5 m
B. 4.24 m
C. 4.24 m
D. 2.44 m
45. A motor pump lifts 6 tonnes of water from
a height of 25 m to a height 35 m from the ground floor in 20 seconds. The power of the pump (in kW) is $\left[g=10 \mathrm{~ms}^{-2}\right]$
A. 3
B. 12
C. 1.5
D. 6

Answer: A

D Watch Video Solution

