

India's Number 1 Education App

## PHYSICS

# **BOOKS - NTA MOCK TESTS**

# NTA NEET SET 28



1. The atomic number and the mass number of

an atom remains unchanged when it emits

#### A. gamma ray

- B. a neutron
- C.  $\beta$  particle
- D. An  $\alpha$  particle

#### Answer: A



2. After absorbing a slowly moving neutrons of mass  $m_N$  (momentum ~0) a nucleus of mass M breaks into two nucleii of mass  $m_1$  and  $5m_1(6m_1=M+m_N)$ , respectively . If the de-Broglie wavelength of the nucleus with mass  $m_1$  is  $\lambda$ , then de Broglie wavelength of the other nucleus will be

A.  $25\lambda$ B.  $5\lambda$ C.  $\frac{\lambda}{5}$ 

D.  $\lambda$ 

#### Answer: D



**3.** The y co - ordinate of the centre of mass of the system of three rods of length 2a and two rods of length a as shown in the figure is (Assume all rods to be of uniform density)



B. 
$$\frac{9a}{16\sqrt{3}}$$
C. zero

D. 
$$\frac{8a}{\sqrt{3}}$$

#### Answer: B

Watch Video Solution

**4.** A small ball of mass m is released from rest from the position shown . All contact surface are smooth . The speed of the ball when it

#### reaches its lowest position is



A. 
$$\sqrt{\frac{2gR}{3}}$$
  
B.  $\sqrt{\frac{4gR}{3}}$ 

C. 
$$\sqrt{gR}$$

D. 
$$\sqrt{2gR}$$

#### **Answer: B**

### Watch Video Solution

5. Keeping the banking angle same , to increase the maximum speed with which a vehicle can travel on the curve road by 10%, the radius of curvature of the road has to be changed from 20 m to

A. 22 m

B. 40 m

C. 24.2 m

D. 14.4 m

#### Answer: C



6. The magnetic susceptibility of a rod is 499. The absolute permeability of vacuum is  $4\pi \times 10^{-7} H/m$ . The absolute permeability of the material of the rod is

A. 
$$\pi imes 10^{-4}$$

B.  $2\pi imes10^{-4}$ 

C.  $3\pi imes10^{-4}$ 

#### D. $4\pi imes10^{-4}$

#### Answer: B

#### Watch Video Solution

**7.** By using only two resistance coils-singly, in series, or in parallel one should be able to obtain resistances of 3, 4, 12 and 16 ohms . The separate resistances of the coil are

A. 3 and 4

B. 4 and 12

C. 12 and 16

D. 16 and 3

Answer: B

Watch Video Solution

8. The reading of ammeter in the circuit shown

is



#### A. 6A

- $\mathsf{B.}\,4A$
- $\mathsf{C.}\,2A$
- $\mathsf{D}.\,1A$

#### Answer: B



9. An emf of 15V is applied in a circuit containing 5H inductance and  $10\Omega$  resistance. The ratio of the currents at time  $t = \infty$  and t = 1s is

A. 
$$\displaystyle rac{e^2}{e^2-1}$$
  
B.  $\displaystyle 1-e^{-1}$ 

$$\mathsf{C.}\,e^{-1}$$

#### D. none of these

#### Answer: A



**10.** Two circular coils A and B are facing each other as shown in figure. The current i through A can be altered



A. there will be repulsion between A and B

if i is increased

B. there will be attraction between A and B

if *i* is increased

C. There will be neither attraction nor repulsion when *i* is changed

D. Attraction or repulsion between A and B

depends on the direction of current. It

does not depend whether the current is

increased of decreased

#### Answer: A





Equivalent capacitance between x and y is

A. 
$$\frac{7}{8}C$$
  
B.  $\frac{8}{7}C$   
C.  $\frac{7}{9}C$ 

D.  $\frac{9}{7}C$ 

Answer: A

Watch Video Solution

**12.** In the circuit shown, a potential difference of 60 V is applied across AB. The potential

difference between the points M and N is



A. 10 V

- B. 15 V
- C. 20 V

#### D. 30 V

#### Answer: D



**13.** How high a man be able to jump on the surface of a planet of radius 320 km, but having density same as that of the earth if he jumps 5 m on the surface of the earth? (Radius of earth = 6400 km)

A. 60 m

B. 80 m

C. 100 m

D. 120 m

#### Answer: C



14. A comet revolves around the sun in an eliptical orbit. When it is closest to the sun at a distance d, its corresponding kinetic energy is  $k_0$ . If it is farthest from the sun at distance

3d then the corresponding kinetic energy will

be

A. 
$$\frac{k_0}{9}$$
  
B.  $\frac{8k_0}{9}$   
C.  $\frac{k_0}{4}$   
D.  $\frac{4k_0}{9}$ 

Answer: A

# **Watch Video Solution**

**15.** A sphere and a cube of same material and same total surface area are placed in the same evaculated space turn by turn after they are heated to the same temperature. Find the ratio of their initial rates of cooling in the enclosure.

A. 
$$\sqrt{\frac{\pi}{6}}$$
: 1  
B.  $\sqrt{\frac{\pi}{3}}$ : 1  
C.  $\frac{\pi}{\sqrt{6}}$ : 1  
D.  $\frac{\pi}{\sqrt{3}}$ : 1

#### Answer: A



16. Pressure versus temperature graph of an ideal gas is as shown in figure. Density of the gas at point A is  $\rho_0$ . Density at point B will be



A. 
$$\frac{3}{4}\rho_0$$
  
B.  $\frac{3}{2}\rho_0$   
C.  $\frac{4}{2}\rho_0$ 

D.  $2
ho_0$ 

#### Answer: B



17. A vessel of volume 20L contains a mixture o hydrogen and helium at temperature of  $27^{\circ}C$ and pressure 2.0atm The mass of the mixture is 5g. Assuming the gases to be ideal, the ratio of the mass of hydrogen to heat of helium in the given mixture will be

A. 1:2

B. 2:3

C.2:1

D. 2:5

#### Answer: D

Watch Video Solution

**18.** During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio  $C_P/C_V$  for the gas is A.  $\frac{3}{2}$ B.  $\frac{4}{3}$ C. 2 D.  $\frac{5}{3}$ 

Answer: A

### Watch Video Solution

19. A long wire bent as shown in the figure carries current I = 10A. If the radius of the semicircular portion is 1 m, the magnetic induction  $({
m in}\ \ \mu T)$  at the centre C is



A. 
$$\pi^2+4$$

B. 
$$\sqrt{\pi^2 + 4}$$

C. 
$$\pi^2 - 4$$

D. 
$$\sqrt{\pi^2-4}$$

#### Answer: B



**20.** Four particles A, B, and C and D of masses  $m_A, m_B, m_B$  and  $m_D$  respectively, follow the paths shown in the figure, in a uniform magnetic field. Each particle moving with same speed.  $Q_A, Q_B, Q_C$  and  $Q_D$  are the specific charge of particles A, B, C and D respectively (assume that the motion of each particle is in the same plane perpendicular to the magnetic

#### field).



A.  $Q_A < Q_B < Q_C < Q_D$ 

B.  $Q_B < Q_D < Q_C < Q_A$ 

C. charge on the particle B and particle D is

of the same nature

D. work done by magnetic force on the

particle C is minimum as compared to

other particles

Answer: C

Watch Video Solution

**21.** A particle starts from rest and traverses a distance I with uniform acceleration, then moves uniformly over a further distance 2I and finally comes to rest after moving a further

distance 31 under uniform retardation. Assuming entire motion to be rectilinear motion the ratio of average speed over the journey to the maximum speed on its ways is

A. 
$$\frac{4}{5}$$
  
B.  $\frac{3}{5}$   
C.  $\frac{2}{5}$   
D.  $\frac{1}{5}$ 

Answer: B

Watch Video Solution

**22.** A car A is moving with speed  $40 \text{ km h}^{-1}$  along a straight line  $30^{\circ}$  north of east and another car B is moving with same speed along a straight line  $30^{\circ}$  south of east. The relative velocity of car A as observed from the car B is

- A.  $40 \text{ km h}^{-1}$  north east
- B.  $40 \text{ km h}^{-1}$  south
- $C.40 \text{ km h}^{-1}$  north

D.  $40 \text{ km h}^{-1}$  south - east

#### Answer: C



**23.** A symmetrical uniform solid cube of side 5 m is placed on horizontal surface beside a vertical wall, one side of the cube is making an angle  $45^{\circ}$  with the floor as shown. If coefficient of friction  $\mu$  is the same for both wall and floor, the minimum value of  $\mu$  so that

#### cube does not slip



A.  $\mu=1$ 

B. 
$$\mu=0$$
  
C.  $\mu=rac{1}{3}$ 

D. Impossible to balance for any value of  $\mu$ 

#### Answer: B



**24.** Two deuterons undergo nuclear fusion to form a Helium nucleus. Energy released in this process is : (given binding energy per nucleon for deuteron = 1.1 MeV and for helium = 7.0 MeV)

A. 23.6 MeV

B. 30.2 MeV

C. 25.8 MeV

D. 32.4 MeV

#### Answer: A



**25.** The half - life  $of^{215}$  At is  $100\mu$ , s. The time taken for the radioactivity of a sample  $of^{215}$  At to dacay to  $1/16^{th}$  of its initialy value is

A.  $400 \mu s$ 

 $\mathsf{B.}\,6.3\mu s$ 

C.  $40 \mu s$ 

D.  $300 \mu s$ 

Answer: A

Watch Video Solution

**26.** An object of mass 1 kg executes simple harmonic oscillations along the x - axis with a frequency of  $\frac{2}{\pi}Hz$ . At the position x = 1 m, the object has a kinetic energy of 24 J and

potential energy is 8J. The amplitude of the

#### oscillation is

A. 
$$\frac{3}{2}m$$

B. 2m

- C. 4m
- D. 8m

#### Answer: B



**27.** A child swinging on a swing in sitting position, stands up, then the time period of the swing will.

A. increase

B. remain same

C. decrease

D. increase if the child is long and decrease

if the child is short

Answer: C

28. In the photoelectric effect, the maximum speed of electrons is found to be  $6 \times 10^5 m s^{-1}$ . The wavelength used is 4000Å. The work function of the metal is

A. 2.2 eV

B. 2.076 eV

C. 2.3 eV

D. 2.4 eV

#### Answer: B



**29.** A beam of white light is incident normally on a plane surface absorbing 70% of the light and reflecting the rest. If the incident beam of light is power P, find the force exerted by it on the surface.

A. 
$$rac{IA}{c}(1-\eta)$$
  
B.  $rac{IA}{c}(\eta+1)$ 

C. 
$$rac{IA}{c}(2\eta-1)$$
  
D.  $rac{IA}{c}(2-\eta)$ 

#### Answer: D



**30.** A stream of water of density  $\rho$ , cross sectional area A, and speed u strikes a wall that is perpendicular to the direction of the stream, as shown in the figure below. The water then flows sideways across the wall. The

#### force exerted by the stream on the wall is



A.  $ho u^2 A$ 

- B. ho uA/2
- $\mathsf{C.}\, 3\rho u^2 A$
- D.  $u^2 A \,/\, 
  ho$

#### Answer: A



**31.** A spherical ball is dropped in a long column of viscous liquid. Which of the following graphs represent the variation of



(I) gravitational force with time

(ii) viscous force with time

(iii) net force acting on the ball with time

A. Q, R, P

B. R, Q, P

C. P, Q, R

D. R, P, Q

Answer: C



**32.** A concave mirror used for face viewing has focal length of 0.4m. The distance at which you hold the mirror from your face in order to see your image upright with a magnification of 5 is \_\_\_\_\_ (in m).

A. 1.60 m

B. 0.16 m

C. 0.32 m

D. 0.24 m

Answer: C

Vatch Video Solution 33. एक प्रकाश किरण प्रिज्म abc पर ( अपवर्तनांक  $1=\sqrt{3}$ ) चित्रानुसार आपतित हो रही है | 60 (a) प्रिज्म abc द्वारा प्रकाश किरण का विचलन न्यूनतम होने के लिए आपतन कोण का मान ज्ञात कीजिए | (b) दूसरे प्रिज्म (DCE) को किस कोण से घुमाया जाए, कि अंतिम किरण में नेट न्यूनतम विचलन प्राप्त हो सके?

A.  $60^{\,\circ}$ 

B.  $45^{\,\circ}$ 

C.  $90^{\circ}$ 

D.  $30^{\circ}$ 

Answer: A



**34.** In Fig a sphere of radius 2m rolls on a plank. The accelerations of the sphere and the

plank are indicated. The value of lpha is



A. 
$$2 \mathrm{~rad~s^{-2}}$$

- B. 4 rad s  $^{-2}$
- C. 3 rad s  $^{-2}$
- D. 1 rad s  $^{-2}$

#### Answer: C

Watch Video Solution

**35.** A uniform rod is rotating about a horizontal axis as shown. The rod is hinged at one of the ends. The rod is released from a vertical position by slightly pushing it. As the rod moves from A to B





A. both the direction and magnitude of

angular momentum about the axis

change

B. the direction of  $\stackrel{\longrightarrow}{L}$  changes but

magnidude does

C. the direction of  $\overrightarrow{L}$  does not change but

magnitude does

D. neither the direction nor the magnitude

changes

Answer: C

Watch Video Solution

**36.** The temperature dependence of resistance of Cu and undoped Si in the temperature range 300 - 400K, is best described by :

A. linear increase for Cu, exponential

decrease for Si

B. linear decrease for Cu, linear decrease

for Si

C. linear increase for Cu, linear increase for

D. linear increase for Cu exponential

increase for Si

#### Answer: A



#### 37. In the circuit shown in the following figure,

the value of Y is



A. 0

B. 1

#### C. fluctuates between 0 and 1

#### D. indeterminate as the circuit cannot be

realized

Answer: A



A. zero

B.1 mA

C. 10 mA

#### D. 30 mA

#### Answer: A

#### Watch Video Solution

**39.** The R.M.S. speed of oxygen molecules at temperature T (in kelvin) is  $v m s^{-1}$ . As the temperature becomes 4T and the oxygen gas dissociates into atomic oxygen, then the speed of atomic oxygen

A. remains the same

B. becomes 2v

C. becomes  $\sqrt{2}v$ 

D. becomes  $2\sqrt{2}v$ 

#### Answer: D

Watch Video Solution

**40.** Obtain the relation between degrees of freedom of a gas and ratio of two principal specific heats of the gas.



#### Answer: A

### Watch Video Solution

**41.** If the force is given by  $F = at + bt^2$  with t

is time. The dimensions of a and b are

A. 
$$[MLT^{-4}], [MLT^{-2}]$$
  
B.  $[MLT^{-3}], [MLT^{-4}]$   
C.  $[ML^2T^{-3}], [ML^2T^{-2}]$   
D.  $[ML^2T^{-3}], [ML^2T^{-4}]$ 

#### **Answer: B**



**42.** In the Young's double slit experiment, the intensities at two points  $P_1$  and  $P_2$  on the screen are respectively  $I_1$  and  $I_2$  If  $P_1$  is

located at the centre of a bright fringe and  $P_2$ is located at a distance equal to a quarter of fringe width from  $P_1$  then  $\frac{I_1}{I_2}$  is



 $\mathsf{B}.\,\frac{1}{2}$ 

C. 4

D. 16

#### Answer: A

Watch Video Solution

**43.** The anode voltage of photocellis kept fixed. The wavelength  $\lambda$  of the light falling on the cathode is gradually changed. The plate current *I* of the photocell varies as follows:





#### Answer: C



**44.** The wavelength of  $H_{\alpha}$  line in the hydrogen spectrum is found to be 6563Å in the laboratory. If the velocity of the milky way is  $1.05 \times 10^6 m s^{-1}$ , then the wavelength of  $H_{\alpha}$ line in the spectrum of milky way will be **A.** 6457Å

**B.** 6586Å

**C**. 7123Å

D. 7349Å

Answer: B



**45.** The speed v reached by a car of mass m in travelling a distance x, driven with constant power P, is given by

A. 
$$v = rac{3xP}{m}$$
  
B.  $v = \left(rac{3xP}{m}
ight)^{1/2}$   
C.  $v = \left(rac{3xP}{m}
ight)^{1/3}$ 

D. 
$$v=\left(rac{3xP}{m}
ight)^2$$

#### Answer: C

