đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 28

Physics

1. The atomic number and the mass number of an atom remains unchanged when it emits
A. gamma ray
B. a neutron
C. $\beta-$ particle
D. An $\alpha-$ particle

Answer: A

- Watch Video Solution

2. After absorbing a slowly moving neutrons of mass m_{N} (momentum ~ 0) a nucleus of mass
M breaks into two nucleii of mass
m_{1} and $5 m_{1}\left(6 m_{1}=M+m_{N}\right)$, respectively .

If the de-Broglie wavelength of the nucleus
with mass m_{1} is λ, then de Broglie wavelength of the other nucleus will be
A. 25λ
B. 5λ
C. $\frac{\lambda}{5}$
D. λ

Answer: D

3. The y co - ordinate of the centre of mass of the system of three rods of length $2 a$ and two rods of length a as shown in the figure is (Assume all rods to be of uniform density)

A. $\frac{9 a}{8 \sqrt{3}}$

$$
\begin{aligned}
& \text { B. } \frac{9 a}{16 \sqrt{3}} \\
& \text { C. zero } \\
& \text { D. } \frac{8 a}{\sqrt{3}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

4. A small ball of mass m is released from rest from the position shown. All contact surface are smooth . The speed of the ball when it
reaches its lowest position is

A. $\sqrt{\frac{2 g R}{3}}$
B. $\sqrt{\frac{4 g R}{3}}$
C. $\sqrt{g R}$
D. $\sqrt{2 g R}$

Answer: B
5. Keeping the banking angle same , to increase the maximum speed with which a vehicle can travel on the curve road by 10%, the radius of curvature of the road has to be changed from 20 m to
A. 22 m
B. 40 m
C. 24.2 m
D. 14.4 m

Answer: C

- Watch Video Solution

6. The magnetic susceptibility of a rod is 499 .

The absolute permeability of vacuum is
$4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$. The absolute permeability of
the material of the rod is
A. $\pi \times 10^{-4}$
B. $2 \pi \times 10^{-4}$
C. $3 \pi \times 10^{-4}$
D. $4 \pi \times 10^{-4}$

Answer: B

D Watch Video Solution

7. By using only two resistance coils-singly, in series, or in parallel one should be able to obtain resistances of $3,4,12$ and 16 ohms. The separate resistances of the coil are
A. 3 and 4
B. 4 and 12
C. 12 and 16
D. 16 and 3

Answer: B

- Watch Video Solution

8. The reading of ammeter in the circuit shown
is

A. $6 A$
B. $4 A$
C. $2 A$
D. $1 A$

Answer: B
9. An emf of 15 V is applied in a circuit containing $5 H$ inductance and 10Ω resistance.

The ratio of the currents at time $t=\infty$ and

$$
t=1 s \text { is }
$$

$$
\begin{aligned}
& \text { A. } \frac{e^{2}}{e^{2}-1} \\
& \text { B. } 1-e^{-1} \\
& \text { C. } e^{-1}
\end{aligned}
$$

D. none of these

Answer: A

- Watch Video Solution

10. Two circular coils A and B are facing each other as shown in figure. The current i through A can be altered

A. there will be repulsion between A and B
if i is increased
B. there will be attraction between A and B
if i is increased
C. There will be neither attraction nor
repulsion when i is changed
D. Attraction or repulsion between A and B
depends on the direction of current. It
does not depend whether the current is
increased of decreased

Answer: A

- Watch Video Solution

11.

Equivalent capacitance between x and y is
A. $\frac{7}{8} C$
B. $\frac{8}{7} C$
c. $\frac{7}{9} C$

D. $\frac{9}{7} C$

Answer: A

D Watch Video Solution

12. In the circuit shown, a potential difference of 60 V is applied across $A B$. The potential
difference between the points M and N is

A. 10 V
B. 15 V
C. 20 V
D. 30 V

Answer: D

D Watch Video Solution

13. How high a man be able to jump on the
surface of a planet of radius 320 km , but
having density same as that of the earth if he jumps 5 m on the surface of the earth? (Radius of earth $=6400 \mathrm{~km}$)
A. 60 m
B. 80 m

C. 100 m

D. 120 m

Answer: C

D Watch Video Solution

14. A comet revolves around the sun in an eliptical orbit. When it is closest to the sun at
a distance d, its corresponding kinetic energy
is k_{0}. If it is farthest from the sun at distance

3d then the corresponding kinetic energy will be

> A. $\frac{k_{0}}{9}$
> B. $\frac{8 k_{0}}{9}$
> C. $\frac{k_{0}}{4}$
> D. $\frac{4 k_{0}}{9}$

Answer: A
(Watch Video Solution
15. A sphere and a cube of same material and
same total surface area are placed in the same
evaculated space turn by turn after they are heated to the same temperature. Find the ratio of their initial rates of cooling in the enclosure.
A. $\sqrt{\frac{\pi}{6}}: 1$
B. $\sqrt{\frac{\pi}{3}}: 1$
C. $\frac{\pi}{\sqrt{6}}: 1$
D. $\frac{\pi}{\sqrt{3}}: 1$

Answer: A

D Watch Video Solution

16. Pressure versus temperature graph of an
ideal gas is as shown in figure. Density of the gas at point A is ρ_{0}. Density at point B will be

A. $\frac{3}{4} \rho_{0}$
B. $\frac{3}{2} \rho_{0}$
C. $\frac{4}{2} \rho_{0}$
D. $2 \rho_{0}$

Answer: B

- Watch Video Solution

17. A vessel of volume $20 L$ contains a mixture o
hydrogen and helium at temperature of $27^{\circ} \mathrm{C}$
and pressure 2.0 atm The mass of the mixture
is $5 g$. Assuming the gases to be ideal, the ratio
of the mass of hydrogen to heat of helium in
the given mixture will be
A. 1:2
B. $2: 3$
C. 2:1
D. $2: 5$

Answer: D

- Watch Video Solution

18. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio
C_{P} / C_{V} for the gas is
A. $\frac{3}{2}$
B. $\frac{4}{3}$
C. 2
D. $\frac{5}{3}$

Answer: A

D Watch Video Solution

19. A long wire bent as shown in the figure carries current $I=10 A$. If the radius of the semicircular portion is 1 m , the magnetic
induction (in μT) at the centre C is

A. $\pi^{2}+4$
B. $\sqrt{\pi^{2}+4}$
C. $\pi^{2}-4$
D. $\sqrt{\pi^{2}-4}$

Answer: B
20. Four particles A, B, and C and D of masses m_{A}, m_{B}, m_{B} and m_{D} respectively, follow the paths shown in the figure, in a uniform magnetic field. Each particle moving with same speed. Q_{A}, Q_{B}, Q_{C} and Q_{D} are the specific charge of particles A, B, C and D respectively
(assume that the motion of each particle is in the same plane perpendicular to the magnetic
field).

A. $Q_{A}<Q_{B}<Q_{C}<Q_{D}$
B. $Q_{B}<Q_{D}<Q_{C}<Q_{A}$
C. charge on the particle B and particle D is

D. work done by magnetic force on the

 particle C is minimum as compared to other particles
Answer: C

D Watch Video Solution

21. A particle starts from rest and traverses a distance I with uniform acceleration, then moves uniformly over a further distance 21 and finally comes to rest after moving a further
distance 31 under uniform retardation.

Assuming entire motion to be rectilinear motion the ratio of average speed over the journey to the maximum speed on its ways is
A. $\frac{4}{5}$
B. $\frac{3}{5}$
C. $\frac{2}{5}$
D. $\frac{1}{5}$

Answer: B

22. A car A is moving with speed $40 \mathrm{~km} \mathrm{~h}^{-1}$ along a straight line 30° north of east and another car B is moving with same speed along a straight line 30° south of east. The relative velocity of $\operatorname{car} A$ as observed from the car B is
A. $40 \mathrm{~km} \mathrm{~h}^{-1}$ north - east
B. $40 \mathrm{~km} \mathrm{~h}^{-1}$ south
C. $40 \mathrm{~km} \mathrm{~h}^{-1}$ north
D. $40 \mathrm{~km} \mathrm{~h}^{-1}$ south - east

Answer: C

- Watch Video Solution

23. A symmetrical uniform solid cube of side 5
m is placed on horizontal surface beside a
vertical wall, one side of the cube is making an
angle 45° with the floor as shown. If coefficient of friction μ is the same for both
wall and floor, the minimum value of μ so that
cube does not slip

A. $\mu=1$
B. $\mu=0$
C. $\mu=\frac{1}{3}$
D. Impossible to balance for any value of μ

Answer: B

D Watch Video Solution

24. Two deuterons undergo nuclear fusion to
form a Helium nucleus. Energy released in this
process is: (given binding energy per nucleon
for deuteron $=1.1 \mathrm{MeV}$ and for helium $=7.0$

MeV)
A. 23.6 MeV
B. 30.2 MeV

C. 25.8 MeV

D. 32.4 MeV

Answer: A

D Watch Video Solution

25. The half - life $o f^{215}$ At is $100 \mu, s$. The time taken for the radioactivity of a sample $o f^{215}$ At to dacay to $1 / 16^{\text {th }}$ of its initialy value is
A. $400 \mu s$
B. $6.3 \mu s$
C. $40 \mu s$
D. $300 \mu s$

Answer: A

D Watch Video Solution

26. An object of mass 1 kg executes simple harmonic oscillations along the x - axis with a frequency of $\frac{2}{\pi} H z$. At the position $\mathrm{x}=1 \mathrm{~m}$, the object has a kinetic energy of 24 J and
potential energy is 8 J . The amplitude of the oscillation is
A. $\frac{3}{2} m$
B. 2 m
C. 4 m
D. 8 m

Answer: B
(Watch Video Solution
27. A child swinging on a swing in sitting position, stands up, then the time period of the swing will.
A. increase
B. remain same
C. decrease
D. increase if the child is long and decrease
if the child is short

Answer: C
28. In the photoelectric effect, the maximum
speed of electrons is found to be
$6 \times 10^{5} \mathrm{~ms}^{-1}$. The wavelength used is $4000 \AA$.

The work function of the metal is
A. 2.2 eV
B. 2.076 eV
C. 2.3 eV
D. 2.4 eV

Answer: B

- Watch Video Solution

29. A beam of white light is incident normally on a plane surface absorbing 70% of the light and reflecting the rest. If the incident beam of light is power P, find the force exerted by it on the surface.

$$
\begin{aligned}
& \text { A. } \frac{I A}{c}(1-\eta) \\
& \text { B. } \frac{I A}{c}(\eta+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{I A}{c}(2 \eta-1) \\
& \text { D. } \frac{I A}{c}(2-\eta)
\end{aligned}
$$

Answer: D

D Watch Video Solution

30. A stream of water of density ρ, cross sectional area A, and speed u strikes a wall that is perpendicular to the direction of the stream, as shown in the figure below. The water then flows sideways across the wall. The
force exerted by the stream on the wall is

A. $\rho u^{2} A$
B. $\rho u A / 2$
C. $3 \rho u^{2} A$
D. $u^{2} A / \rho$

Answer: A

- Watch Video Solution

31. A spherical ball is dropped in a long column of viscous liquid. Which of the following graphs represent the variation of

(I) gravitational force with time
(ii) viscous force with time
(iii) net force acting on the ball with time
A. $\mathrm{Q}, \mathrm{R}, \mathrm{P}$
B. R, Q, P
C. P, Q, R
D. $\mathrm{R}, \mathrm{P}, \mathrm{Q}$

Answer: C

- Watch Video Solution

32. A concave mirror used for face viewing has
focal length of $0.4 m$. The distance at which
you hold the mirror from your face in order to
see your image upright with a magnification of

5 is ___ (in m).
A. 1.60 m
B. 0.16 m
C. 0.32 m
D. 0.24 m

Answer: C

- Watch Video Solution

33. एक प्रकाश किरण प्रिज्म abc पर (अपवर्तनांक $=\sqrt{3})$ चित्रानुसार आपतित हो रही है।

(a) प्रिज्म $a b c$ द्वारा प्रकाश किरण का विचलन न्यूनतम होने के लिए आपतन कोण का मान ज्ञात कीजिए।
(b) दूसरे प्रिज्म (DCE) को किस कोण से घुमाया जाए, कि अंतिम किरण में नेट न्यूनतम विचलन प्राप्त हो सके?
A. 60°
B. 45°
C. 90°
D. 30°

Answer: A

D Watch Video Solution

34. In Fig a sphere of radius $2 m$ rolls on a plank. The accelerations of the sphere and the
plank are indicated. The value of α is

A. $2 \operatorname{rad~s}^{-2}$
B. $4 \mathrm{rad}^{-2}$
C. $3 \mathrm{rad} \mathrm{s}^{-2}$
D. $1 \mathrm{rad} \mathrm{s}^{-2}$

Answer: C

35. A uniform rod is rotating about a horizontal axis as shown. The rod is hinged at one of the ends. The rod is released from a vertical position by slightly pushing it. As the rod moves from A to B

A. both the direction and magnitude of angular momentum about the axis
change
B. the direction of \vec{L} changes but magnidude does
C. the direction of \vec{L} does not change but magnitude does
D. neither the direction nor the magnitude changes

Answer: C

D Watch Video Solution

36. The temperature dependence of resistance of Cu and undoped Si in the temperature range $300-400 K$, is best described by :
A. linear increase for $C u$, exponential decrease for $S i$
B. linear decrease for $C u$, linear decrease
for Si
C. linear increase for $C u$, linear increase for

Si

D. linear increase for $C u$ exponential

 increase for $S i$Answer: A

D Watch Video Solution

37. In the circuit shown in the following figure,
the value of Y is

A. 0
B. 1
C. fluctuates between 0 and 1
D. indeterminate as the circuit cannot be
realized
38. The current through an ideal $P N$-junction shown in the following circuit diagram will be

A. zero
B. 1 mA
C. 10 mA

D. 30 mA

Answer: A

- Watch Video Solution

39. The R.M.S. speed of oxygen molecules at temperature T (in kelvin) is $\mathrm{vm} \mathrm{s}^{-1}$. As the temperature becomes 4T and the oxygen gas dissociates into atomic oxygen, then the speed of atomic oxygen
A. remains the same
B. becomes $2 v$
C. becomes $\sqrt{2} v$
D. becomes $2 \sqrt{2} v$

Answer: D

D Watch Video Solution

40. Obtain the relation between degrees of freedom of a gas and ratio of two principal specific heats of the gas.
A. $\frac{2}{f}+1$
B. $1-\frac{2}{f}$
C. $1+\frac{1}{f}$
D. $1-\frac{1}{f}$

Answer: A

D Watch Video Solution

41. If the force is given by $F=a t+b t^{2}$ with t is time. The dimensions of a and b are
A. $\left[M L T^{-4}\right],\left[M L T^{-2}\right]$
B. $\left[M L T^{-3}\right],\left[M L T^{-4}\right]$
C. $\left[M L^{2} T^{-3}\right],\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{2} T^{-3}\right],\left[M L^{2} T^{-4}\right]$

Answer: B

D Watch Video Solution

42. In the Young's double slit experiment, the intensities at two points P_{1} and P_{2} on the screen are respectively I_{1} and I_{2} If P_{1} is
located at the centre of a bright fringe and P_{2}
is located at a distance equal to a quarter of
fringe width from P_{1} then $\frac{I_{1}}{I_{2}}$ is
A. 2
B. $\frac{1}{2}$
C. 4
D. 16

Answer: A

D Watch Video Solution
43. The anode voltage of photocellis kept fixed. The wavelength λ of the light falling on the cathode is gradually changed. The plate current I of the photocell varies as follows:
A.

B.

c.

Answer: C

- Watch Video Solution

44. The wavelength of H_{α} line in the hydrogen
spectrum is found to be $6563 \AA$ in the laboratory. If the velocity of the milky way is
$1.05 \times 10^{6} \mathrm{~ms}^{-1}$, then the wavelength of H_{α}
line in the spectrum of milky way will be
A. $6457 \AA$
B. $6586 \AA$
C. $7123 \AA$
D. $7349 \AA$

Answer: B

D Watch Video Solution
45. The speed v reached by a car of mass m in
travelling a distance x , driven with constant power P, is given by
A. $v=\frac{3 x P}{m}$
B. $v=\left(\frac{3 x P}{m}\right)^{1 / 2}$
C. $v=\left(\frac{3 x P}{m}\right)^{1 / 3}$
D. $v=\left(\frac{3 x P}{m}\right)^{2}$

Answer: C

- Watch Video Solution

