©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 30

Physics

1. If alpha, beta and gamma rays carry same momentum, which has the longest wavelength
A. Alpha rays
B. Beta rays
C. Gamma rays
D. None, all have the same wavelength

Answer: D

D Watch Video Solution

2. The voltage applied to the Coolidge X-ray tube is increased by 25%. As a result the short wave limit of continuous X-ray spectrum shifts
by $\Delta \lambda$. The initial voltage applied to the tube
is

> A. $\frac{h c}{4 e \Delta \lambda}$
> B. $\frac{h c}{5 e \Delta \lambda}$
> C. $\frac{4 h c}{5 e \Delta \lambda}$
> D. $\frac{5 h c}{4 e \Delta \lambda}$

Answer: B

- Watch Video Solution

3. A non-uniform thin rod of length L is placed along x-axis as such its one of ends at the origin. The linear mass density of rod is
$\lambda=\lambda_{0} x$. The distance of centre of mass of rod from the origin is :
A. $\frac{L}{2}$
B. $\frac{2 L}{3}$
C. $\frac{L}{4}$
D. $\frac{L}{5}$
4. The distance of the centre of mass of a
hemispherical shell of radius R from its centre
is

$$
\begin{aligned}
& \text { А. } \frac{R}{2} \\
& \text { B. } \frac{R}{3} \\
& \text { C. } \frac{2 R}{2} \\
& \text { D. } \frac{2 R}{3}
\end{aligned}
$$

5. A stone of mass 0.3 kg attched to a 1.5 m
long stirng is whirled around in a horizontal cirlcle at a speed of $6 \mathrm{~m} / \mathrm{s}$ The tension in the string is
A. 10 N
B. 20 N
C. 7.2 N
D. none of these

Answer: C

- Watch Video Solution

6. Ferromagnetic materials owe their properties to
A. Filled inner subshells
B. Vacant inner subshells
C. Partially filled inner subshells
D. all the subshells are equally filled

Answer: C

D Watch Video Solution

7. For a cell terminal potential difference is 2.2

V when circuit is open and reduces to 1.8 V when cell is connected to a resistance of $\mathrm{R}=5 \Omega$
then determine internal resistance of cell is:-
A. $\frac{10}{9} \Omega$
B. $\frac{9}{10} \Omega$
C. $\frac{11}{9} \Omega$
D. $\frac{5}{9} \Omega$

Answer: A

D Watch Video Solution

8. If the length of potentiometer wire is
increased, then the accuracy in the determination of null point
A. decrease
B. increase

C. remains unaffected

D. none of these

Answer: B

D Watch Video Solution

9. The capacitive reactance in an A.C. circuit is

A. effective resistance due to capacitor
B. effective wattage
C. effective voltage

D. none of the above

Answer: A

- Watch Video Solution

10. A solid metal cube of edge length 2 cm is
moving in a positive y-direction at a constant
speed of $6 \mathrm{~m} / \mathrm{s}$. There is a uniform magnetic field of 0.1 T in the positive z-direction. The potential difference between the two faces of the cube perpendicular to the x-axis, is :
A. 12 mV
B. 1 mV
C. 2 mV
D. 6 mV

Answer: A

- Watch Video Solution

11. Charges are placed at the corners of a square of side a as shown in the following
figure. The charged particle placed at A is in

equilibrium. The ratio $\frac{q_{1}}{q}$ is
 q_{2}

A. 1
B. $2 \sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{3}{\sqrt{2}}$

Answer: B

D Watch Video Solution

12. The position of the point where the net electric field will be zero is

A. 2a from 4Q
B. $a / 2$ from $-Q$
C. $2 a$ from $-Q$
D. neutral point is not possible

Answer: A

D Watch Video Solution
13. Acceleration due to gravity is ' g ' on the surface of the earth. The value of acceleration due to gravity at a height of 32 km above
earth's surface is (Radius of the earth $=6400$ km)
A. 0.99 g
B. 0.8 g
C. 1.01 g
D. 0.9 g

Answer: A
(Watch Video Solution
14. The ratio of the radii of the planets
P_{1} and P_{2} is k. the ratio of the acceleration due to gravity is r. the ratio of the escape velocities from them will be
A. $a b$
B. $\sqrt{a b}$
C. $a b^{2}$
D. $a^{2} b$

Answer: B
15. Two cylinders P and Q have the same length and diameter and are made of different materials having thermal conductivities in the ratio 2 : 3. These two cylinders are combined to make a cylinder. One end of P is kept at $100^{\circ} \mathrm{C}$ and another end of Q at $0^{\circ} \mathrm{C}$. The temperature at the interface of P and Q is
A. $40^{\circ} C$
B. $50^{\circ} \mathrm{C}$
C. $60^{\circ} C$
D. $70^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

16. One mole of an ideal monoatomic gas at
$27^{\circ} \mathrm{C}$ is subjected to a reversible isoentropic
compression until the temperature reached to
$327^{\circ} \mathrm{C}$. If the initial pressure was 1.0 atm , then
find the value of in P_{2}
(Given $: \ln 2=0.7$)
A. 1.75
B. 0.176
C. 1.0395
D. 2.0

Answer: A

D Watch Video Solution
17. A carnot engine has the same efficiency between (i) 100 K and 500 K and (ii) T and 900
K. Find T.
A. 180 K
B. 90 K
C. 270 K
D. 360 K

Answer: A

- Watch Video Solution

18. The temperature of 5 mol of gas which was
held at constant volume was change from
$100^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$. The change in internal energy was found to be 80 J . The total heat capacity of the gas at constant volume will be equal to
A. 8
B. 4
C. 0.8
D. 0.4

Answer: B

D Watch Video Solution

19. A conducting ring of radius r having charge
q is rotating with angular velocity ω about its
axes. Find the magnetic field at the centre of
the ring.

A. $\frac{\mu_{0} q \omega}{2 \pi R}$
B. $\frac{\mu_{0} q \omega}{\pi R}$
C. $\frac{\mu_{0} q \omega}{4 \pi R}$
D. zero

Answer: C

D Watch Video Solution

20. A closed loop $P Q R S$ carrying a current is
place in a uniform magnetic forces on
segments $P S, S R$ and $R Q$ are F_{1}, F_{2} and F_{3}
respectively and are in the plane of the paper and along the directions shown, the force on
the segment $Q P$ is

$$
\begin{aligned}
& \text { A. } \sqrt{\left(F_{3}-F_{1}\right)^{2}-F_{2}^{2}} \\
& \text { B. } F_{3}-F_{1}+F_{2} \\
& \text { C. } F_{3}-F_{1}-F_{2} \\
& \text { D. } \sqrt{\left(F_{3}-F_{1}\right)^{2}+F_{2}^{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

21. A body moves speed V_{1} for distance L and
then with speed V_{2} for distance 2 L . The average speed for the motion is
A. $\frac{V_{1}+V_{2}}{2}$
B. $\frac{3 V_{1} V_{2}}{V_{1}+2 V_{2}}$
C. $\frac{3 V_{1} V_{2}}{2 V_{1}+V_{2}}$
D. $\frac{3 V_{1} V_{2}}{V_{1}+V_{2}}$

Answer: C

D Watch Video Solution

22. A ball is suspended by a thread from the ceiling of a tram car. The brakes are applied and the speed of the car changes uniformly from $36 \mathrm{kmh}^{-1}$ to zero is 5 s . The angle by which the ball deviates from the vertical is $\left(g=10 m s^{-2}\right)$.
A. $\tan ^{-1}\left(\frac{1}{3}\right)$
B. $\sin ^{-1}\left(\frac{1}{5}\right)$
C. $\tan ^{-1}\left(\frac{1}{5}\right)$
D. $\cot ^{-1}\left(\frac{1}{3}\right)$

Answer: C

D Watch Video Solution

23. A mass M is suspended by a rope from a
rigid support at A as shown in figure. Another rope is tied at the end B, and it is pulled horizontally with a force. If the rope $A B$ makes
an angle θ with the vertical in equilibrium then
the tension in the string $A B$ is

A. $F \sin \theta$
B. $\frac{F}{\sin \theta}$
C. $F \cos \theta$
D. $\frac{F}{\cos \theta}$

Answer: B

- Watch Video Solution

24. Binding energy per nucleons vs mass curve for nucleus is shown in the figure W, X, Y and
Z are four nuclei indicated on the curve . The process that would release energy is

A. $Y \rightarrow 2 z$
B. $W \rightarrow X+Z$
C. $W \rightarrow 2 Y$
D. $X \rightarrow Y+Z$

Answer: C

D Watch Video Solution

25. An isotope decays to $1 / 16^{\text {th }}$ of its mass in

1h. What is the half-life period of the isotope?
A. 15 min
B. 30 min
C. 12 min
D. 10 min

Answer: A

D Watch Video Solution
26. Two bodies P and Q of equal masses are suspended from two separate massless
springs of force constants k_{1} and k_{2}
respectively. If the two bodies oscillate vertically such that their maximum velocities
are equal. The ratio of the amplitude of P to
that of Q is
A. $\sqrt{\frac{k_{1}}{k_{2}}}$
B. $\sqrt{\frac{k_{2}}{k_{1}}}$
C. $\frac{k_{1}}{k_{2}}$
D. $\frac{k_{2}}{k_{1}}$

Answer: B
27. Two simple harmonic are represented by the equation
$y_{1}=0.1 \sin \left(100 \pi+\frac{\pi}{3}\right)$ and $y_{2}=0.1 \cos \pi t$

The phase difference of the velocity of particle
1 with respect to the velocity of particle 2 is.
A. $\frac{-\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{-\pi}{6}$
D. $\frac{\pi}{3}$

Answer: C

D Watch Video Solution

28. When a metallic surface is illuminated with monochromatic light of wavelength λ, the stopping potential is $5 V_{0}$. When the same surface is illuminated with light of wavelength
3λ, the stopping potential is V_{0}. Then the work function of the metallic surface is:
A. $\frac{h c}{6 \lambda}$
B. $\frac{h c}{5 \lambda}$
C. $\frac{h c}{3 \lambda}$
D. $\frac{h c}{4 \lambda}$

Answer: A

D Watch Video Solution

29. The work function of a surface of a photosensitive material is $6.2 e V$. The wavelength of the incident radiation for which the stopping potential is 5 V lies in the
A. ultraviolet region
B. visible region
C. infrared region
D. x-rays region

Answer: A

D Watch Video Solution
30. Water rises in a vertical capillary tube up
to a height of 2.0 cm . If the tube is inclined at
an angle of 60° with the vertical, then up to what length the water will rise in the tube?
A. 2.0 cm
B. 4.0 cm
C. 6.0 cm
D. 8.0 cm

Answer: B
(Watch Video Solution
31. The speed of a ball of radius 2 cm in a viscous liquid is $20 \mathrm{~cm} / \mathrm{s}$. Then the speed of ball of radius Icm in the same liquid is
A. $5 \mathrm{cms}^{-1}$
B. $10 \mathrm{cms}^{-1}$
C. $40 \mathrm{cms}^{-1}$
D. $80 \mathrm{cms}^{-1}$

Answer: A

D Watch Video Solution
32. Two plane mirrors are placed at some angle. There are five images formed when an object is placed symmetrically between them . Find the angle between the mirrors.
A. 60°
B. 45°
C. 30°
D. 90°

Answer: A
33. The graph in Fig. shows how the inverse of magnification $1 / m$ produced by a convex thin lens varies with object distance u. What was the focal length of the lens used ?

A. $\frac{b}{c a}$
B. $\frac{b c}{a}$
C. $\frac{c}{b}$
D. $\frac{b}{c}$

Answer: C

D Watch Video Solution

34. A bullet of mass m hits a block of mass M.

The transfer of energy is maximum when
A. $M^{\prime}=M$
B. $M^{\prime}=2 M$
C. M^{\prime} It It M
D. M^{\prime} gt gt M

Answer: A

D Watch Video Solution

35. A thin uniform circular disc of mass M and
radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with an angular
velocity ω. Another disc of same dimensions
but of mass $\frac{1}{4} \mathrm{M}$ is placed gently on the first disc co-axially. The angular velocity of the system is
A. $\sqrt{2} \omega$
B. $\frac{4}{5} \omega$
C. $\frac{3}{4} \omega$
D. $\frac{1}{3} \omega$

Answer: B
36. A silicon diode has a threshold voltage of
0.7 V . If an input voltage given by $2 \sin (\pi t)$ is
supplied to a half wave rectifier circuit using
this diode, the rectified output has a peak value of
A. 2 V
B. 1.4 V
C. 1.3 V
D. 0.7 V

Answer: C

- Watch Video Solution

37. The output A when all three inputs are first
high and then low respectively, be

A. 0,1
B. 1, 1
C. 1,0
D. 0,0

Answer: C

D Watch Video Solution

38. In the following circuit of PN junction
diodes D_{1}, D_{2} and D_{3} are ideal then i is

A. $\frac{E}{R}$
B. $\frac{E}{2 R}$
C. $\frac{2 E}{3 R}$
D. zero

Answer: C
39. The molecules of a given mass of gas have an rms velocity of $200 \mathrm{~ms}(-1)$ at $27^{\circ} \mathrm{C}$ and pressure 1 atm. When the temperature is $127^{\circ} \mathrm{C}$ and pressure is 2 atm , the rms velocity in $m s^{-1}$ will be ?
A. $\frac{100 \sqrt{2}}{3}$
B. $100 \sqrt{2}$
C. $\frac{400}{\sqrt{3}}$
D. None of these

Answer: C

D Watch Video Solution

40. Water falls from a height 500 m , what is
the rise in temperature of water at bottom if whole energy remains in the water ?
$(J=4.2)$
A. $0.23^{\circ} C$
B. $1.16^{\circ} \mathrm{C}$
C. $0.96^{\circ} C$

D. $1.02^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

41. The frequency f of vibrations of a mass m
suspended from a spring of spring constant k
is given by $f=C m^{x} k^{y}$, where C is a dimensionnless constant. The values of x and y are, respectively,

$$
\text { A. } \frac{1}{2},-\frac{1}{2}
$$

B. $-\frac{1}{2}, \frac{1}{2}$
C. $\frac{1}{2}, \frac{1}{2}$
D. $-\frac{1}{2},-\frac{1}{2}$

Answer: B

- Watch Video Solution

42. The $I^{s t}$ diffraction minimum due to single slit diffraction is θ, for a light of wave length
$5000 \AA$. If the width of the slit si $1 \times 10^{-4} \mathrm{~cm}$
then the value of θ
A. 30°
B. 45°
C. 60°
D. 15°

Answer: A

D Watch Video Solution

43. A clear sheet of polaroid is placed on the
top of similar sheet so that their axes make an
angle $\sin ^{-1}\left(\frac{3}{5}\right)$ with each other. The ratio of
intensity of the emergent light to that of unpolarised incident light is
A. $16: 25$
B. 9: 25
C. $4: 5$
D. $8: 25$

Answer: D

- Watch Video Solution

44. If velocity of a galaxy relative to earth is $1.2 \times 10^{6} \mathrm{~ms}^{-2}$ then percentage increase in wavelength of light from galaxy as compared to the similar source on earth will be :
A. 0.3%
B. 0.4%
C. 0.5%
D. 0.6%

Answer: B
45. The displacement x of a body of mass 1 kg
on a horizontal smooth surface as a function
of time t is given by $x=\frac{t^{4}}{4}$. The work done in the first second is

$$
\begin{aligned}
& \text { A. } \frac{1}{4} J \\
& \text { B. } \frac{1}{2} J \\
& \text { C. } \frac{3}{4} J \\
& \text { D. } \frac{5}{4} J
\end{aligned}
$$

Watch Video Solution

