©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 32

Physics

1. A photon collides with a stationary
hydrogen atom in ground state inelastically.

Energy of the colliding photon is 10.2 eV . After
a time interval of the order of micro second
another photon collides with same hydrogen
atom inelastically with an energy of 15 eV . What
wil be observed by the detector?
(a) 2 photons of energy 10.2 eV
(b) 2 photons of energy 1.4 eV
(c) One photon of energy 10.2 eV and an electron of energy 1.4 eV
(d) One photon of energy 10.2 eV and another photon of energy 1.4 eV
A. 2 photons of energy 10.2 eV
B. 2 photons of energy 1.4 eV
C. One photon of energy 10.2 eV and an electron of energy 1.4 eV
D. One photon of energy 10.2 eV and another photon of energy 1.4 eV

Answer: C

D Watch Video Solution

2. The adjacent figure shows an infinite frame of two sides in a gravity - free space. What is
the final constant kinetic energy expected of
the ball of mass m projected as shown with an
initial velocity v_{0} ? The coefficient of restitution
for the collision between the ball and the frame is $e=0.5$.

A. $0.5 m v_{0}^{2}$
B. $0.25 m v_{0}^{2}$
C. $0.125 m v_{0}^{2}$
D. $0.325 m v_{0}^{2}$

Answer: B

D Watch Video Solution

3. Particle A makes a head on elastic collision with another stationary particle B. They fly apart in opposite directions with equal speeds. The mass ratio will be
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{\sqrt{3}}$

Answer: A

D Watch Video Solution
4. Three balls are dropped from the top of a building with equal speeds but at different angles. Balls strike the ground with velocities
v_{1}, v_{2} and v_{3} respectively, then

A. $v_{1}>v_{2}>v_{3}$
B. $v_{3}>v_{2}>v_{1}$
C. $v_{1}=v_{2}=v_{3}$
D. $v_{2}<v_{3}<v_{1}$

Answer: C
5. A particle is moving in $x-y$ plane as shown in
the figure. Angular velocity of the particle with respect to the origin is

A. $\frac{8}{25} \hat{k} r a d s^{-1}$
B. $-\frac{8}{25} \hat{k} r a d s^{-1}$
C. $\frac{19}{25} \hat{k} r a d s^{-1}$
D. $-\frac{19}{25} \hat{k} r a d s^{-1}$

Answer: A

D Watch Video Solution

6. A paramagnetic material has 10^{28} atoms
$/ m^{3}$. Its magnetic susceptibility at temperature 350 K is 2.8×10^{-4}. Its
susceptibility at $300 K$ is :
A. 3.726×10^{-4}
B. 2.627×10^{-4}
C. 3.267×10^{-4}
D. 3.627×10^{-4}

Answer: C

D Watch Video Solution

7. The resistance of an ammeter is 13Ω and its scale is graduated for a current upto $100 A$.

After an additional shunt has been connected
to this ammeter it becomes possible to measure currents upto 750 A by this meter.

The value of shunt resistance is
A. 0.2Ω
B. $2 k \Omega$
C. 20Ω
D. 2Ω

Answer: D

D Watch Video Solution
8. Eight resistances each of resistance 5Ω are connected in the circuit as shown in figure.

The equivalent resistance between A and B is

A. $\frac{8}{3} \Omega$
B. $\frac{16}{3} \Omega$
C. $\frac{15}{7} \Omega$
D. $\frac{19}{2} \Omega$

Answer: A

D Watch Video Solution

9. The heat produced (in calories) in a resistance R when a current I amperes flows through it for t seconds is given by the expression
A. $\frac{I^{2} R t}{4.2}$
B. $\frac{I R t^{2}}{4.2}$
C. $\frac{4.2 I R}{t^{2}}$
D. $\frac{I R^{2} t}{4.2}$

Answer: A

D Watch Video Solution

10. If all meters are ideal and the reading of the voltmeter 3 is 6 V , then power supplied by
the voltage source is

A. 10 W
B. 38 W
C. 20 W
D. 29.7 W

Answer: D

D Watch Video Solution

11. A circuit is connected as shown in the figure
with the switch S open. When the switch is
closed, the total amount of charge that flows
from Y to X is

A. zero
B. $54 \mu C$
C. $81 \mu C$
D. $27 \mu C$

Answer: D

D Watch Video Solution

12. Two spheres of radii 2 cm and 3 cm are charged to the same potential. If σ and σ_{2} be respectively the values of surface charge
density on the conductors, then the ratio $\frac{\sigma_{1}}{\sigma_{2}}$
will be
A. $\frac{4}{9}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. $\frac{9}{4}$

Answer: C
(Watch Video Solution
13. The instantaneous current and volatage of
an AC circuit are given by
$i=10 \sin (314 t) A$ and $V=100 \sin (314 t) V$
What is the power dissipation in the circuit?
A. 100 W
B. 500 W
C. 300 W
D. 200 W

Answer: B
14. The line $A A^{\prime}$ is on a charged infinite conducting plane which is perpendicular to the plane of the paper. The plane has surface density of charge σ and B is a ball of mass m with a like charge of magnitude q. B is connected by a string from a point on the line
$A A^{\prime}$. The tangent of the angle (θ) formed between the line $A A^{\prime}$ and the string is (provided, the charge q does not affect the
distribution of charge on conducting plate)

A. $\frac{q s i m g a}{2 \varepsilon_{0} m g}$
B. $\frac{q s i m g a}{4 \pi \varepsilon_{0} m g}$
C. $\frac{q s i m g a}{2 \pi \varepsilon_{0} m g}$
D. $\frac{q \sigma}{\varepsilon_{0} m g}$

Answer: D

D Watch Video Solution

15. If the voltage across 500Ω is 5 V . then R_{2} is

A. 400Ω
B. 200Ω
C. 300Ω
D. 500Ω

Answer: C

D Watch Video Solution

16. An infinite conducting sheet has surface charge density σ. The distance between two points is r . The potential difference $\left(V_{A}-V_{B}\right)$
between these point is

A. $\frac{\sigma r}{2 \varepsilon_{0}}$
B. $\frac{\sigma r}{\varepsilon_{0}}$
C. $\frac{\sigma}{\varepsilon_{0} r}$
D. $\frac{\sigma}{2 \varepsilon_{0} r}$

Answer: A

D Watch Video Solution

17. The dimensional formula for magnetic flux is

$$
\text { A. }\left[M L^{0} T^{-2} A^{-1}\right]
$$

B. $\left[M L^{2} T^{-2} A^{-1}\right]$
C. $\left[M L^{2} T^{-1} A^{3}\right]$
D. $\left[M L^{-2} T^{-2} A^{-2}\right]$

Answer: B

D Watch Video Solution

18. A cooling curve is plotted between the temperature of a hot body and time. Which of the following is not true for the cooling curve?
A. Cooling is faster from a calorimeter
having a larger surface area than a smaller one.
B. Cooling is faster from a calorimeter painted black from outside than that from a polished surfaced calorimeter.
C. Cooling is faster from a copper
calorimeter than from a steel
calorimeter.
D. The rate of cooling remains same
throughout the experiment. Hence the graph is a striagth line

- Watch Video Solution

19. Escape velocity of a body from the surface of earth is $11.2 \mathrm{~km} / \mathrm{sec}$. from the earth surface.

If the mass of earth becomes double of its present mass and radius becomes half of its present radius then escape velocity will become
A. $5.6 k m s^{-1}$
B. $11.2 \mathrm{kms}^{-1}$
C. $22.4 \mathrm{kms}^{-1}$

D. $44.8 \mathrm{kms}^{-1}$

Answer: C

D Watch Video Solution

20. An iron rod of length 50 cm is joined at an end to an aluminum rod of length 100 cm . All measurements refer to $20^{\circ} \mathrm{C}$. The coefficients of linear expansion of iron and aluminum are $12 \times 10^{-6} /{ }^{\circ} C$ and $24 \times 10^{-6} /{ }^{\circ} C$,
respectively. The average coefficient of expansion of composite system is :

$$
\begin{aligned}
& \text { A. } 36 \times 10^{-6} \cdot{ }^{\circ} C^{-1} \\
& \text { B. } 12 \times 10^{-6} \cdot{ }^{\circ} C^{-1} \\
& \text { C. } 20 \times 10^{-6} \cdot{ }^{\circ} C^{-1} \\
& \text { D. } 46 \times 10^{-6} \cdot{ }^{\circ} C^{-1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

21.

The coefficient of thermal conductivity of copper is nine times that of steel. In the composite cylindrical bar shown in Fig. what will be the temperature at the junction of copper and steel ?
A. $75^{\circ} C$
B. $67^{\circ} C$
C. $25^{\circ} C$
D. $33^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

22. A thermo-dynamical system is changed from state $\left(P_{1}, V_{1}\right)$ to $\left(P_{2}, V_{2}\right)$ by two different process. The quantity which will remain same will be
A. Q
B. W
C. $Q+W$
D. $\mathrm{Q}-\mathrm{W}$

Answer: D

D Watch Video Solution

23. A current I flows along the length of an infinitely long, straight, thin - walled pipe.

Then
A. The magnetic field at all point inside the pipe is the same, but not zero
B. the magnetic field at any point inside
the pipe is zero
C. the magnetic field is zero only on the axis of the pipe
D. the magnetic field is different at different points inside the pipe

Answer: B

24. A conducting rod of 1 m length and 1 kg mass is suspended by two verticle wires through its ends. An external magnetic field of $2 T$ is applied normal to the rod. Now the current to be passed through the rod so as to make the tension in the wire zero is
[Take $g=10 m s^{-2}$]
A. 15 A
B. $5 A$
C. 1.5 A

D. 2.5 A

Answer: B

D Watch Video Solution

25. A straight wire of length 0.5 metre and
carrying a current of 1.2 ampere is placed in a
uniform magnetic field of induction 2 tesla. If
the magnetic field is perpendicular to the
length of the wire, the force acting on the wire is
A. 2.4 N
B. 1.2 N
C. 3.0 N
D. 2.0 N

Answer: B

- Watch Video Solution

26. The minimum force required to move a body up on an inclined plane is three times
the minimum force required to prevent it from
sliding down the plane.If the coefficient of friction between the body and the inclined plane is $\frac{1}{2 \sqrt{3}}$ the angle of the inclined plane is
A. 60°
B. 45°
C. 30°
D. 15°

Answer: C

27. A radioactive sample S_{1} having the activity
A_{1} has twice the number of nucleic as another
sample S_{2} of activity A_{2}. If $A_{2}=2 A_{1}$, then the ratio of half-life of S_{1} to the half-life of S_{2}
is
A. 4
B. 2
C. 0.25
D. 0.75

Answer: A

D Watch Video Solution

28. Half-life of a radioactive substance A is

4days. The probability that a nuclear will decay in two half-lives is
A. $\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{1}{2}$
D. 1

Answer: B

D Watch Video Solution

29. According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is

Answer: C

D Watch Video Solution

30. A smooth spherical ball of radius 1 cm and density $4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ is dropped gently in a large container containing viscous liquid of density $\quad 2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, and
$\eta=0.1 N-s / m^{2}$. The distance moved by
the ball in $t=0.1 \mathrm{sec}$ after it attains terminal
velocity is

A. $\frac{4}{5} m$ up
B. $\frac{4}{9} m$ up
C. $\frac{2}{3} m$ down
D. $\frac{4}{9} m$ down

Answer: D

D Watch Video Solution

31. A ray light from a liquid $(\mu=\sqrt{3})$ is incident on a system of two right angled prism of refractive indices $\sqrt{3}$ and $\sqrt{2}$ as shown.

The ray suffers zero deviation when emerges
into air from CD. The angle of incidence I is

A. 45°
B. 60°
C. 30°
D. 90°

Answer: A

D Watch Video Solution

32. A microscope is having objective of focal length and eye piece of focal length 6 cm . If tube length 30 cm and image is formed at the
least distance of distant vision, what is the magnification prodcut by the microscope. (take $\mathrm{D}=25 \mathrm{~cm}$)
A. 6
B. 155
C. 25
D. 125

Answer: B

D Watch Video Solution
33. Moment of inertia of a uniform quarter disc of radius R and mass M about an axis
through its centre of mass and perpendicular to its plane is :

$$
\begin{aligned}
& \text { A. } \frac{M R^{2}}{2}-M\left(\frac{4 R}{3 \pi}\right)^{2} \\
& \text { B. } \frac{M R^{2}}{2}-M\left(\sqrt{2} \frac{4 R}{3 \pi}\right)^{2} \\
& \text { C. } \frac{M R^{2}}{2}-M\left(\frac{4 R}{2 \pi}\right)^{2} \\
& \text { D. } \frac{M R^{2}}{2}-M\left(\sqrt{2} \frac{4 R}{3 \pi}\right)^{2} \frac{9}{32 \pi}
\end{aligned}
$$

Answer: B

34. The radius of a wheel is R and its radius of gyration about its axis passing through its center and perpendicular to its plane is K. If the wheel is rolling without slipping. Then the ratio of its rotational kinetic energy to its translational kinetic energy is

$$
\begin{aligned}
& \text { A. } \frac{K^{2}}{R^{2}} \\
& \text { B. } \frac{R^{2}}{K^{2}} \\
& \text { C. } \frac{R^{2}}{R^{2}+K^{2}} \\
& \text { D. } \frac{K^{2}}{R^{2}+K^{2}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

35. How many NAND gates used to form AND gate.
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

36. If the forward voltage in a diode is
increased, the width of the depletion region-
A. increases
B. decreases
C. fluctuates
D. no change

Answer: B

- Watch Video Solution

37. For the same rise in temperature of one mole of gas at constant volume, heat required
for a non - linear tratomic gas is K times that required for monoatomic gas. The value of K is
A. 1
B. 0.5
C. 2
D. 2.5

Answer: C

D Watch Video Solution

38. In a single slit diffraction pattern, the distance between the first minimum on the left and the first minimum on the right is 5 mm . The screen on which the diffraction pattern is displayed is at a distance of 80 cm
from the silt. The wavelength is $6000 \AA$. The slit width (in mm) is about.
A. 0.576
B. 0.348
C. 0.192
D. 0.096

Answer: C
(Watch Video Solution
39. In Young's double slit experiment, the two
slits 0.20 mm apart are illuminated by monochromatic light of wavelength 600 nm .

The screen 1.0 m away from the slits .
(a) Find the distance of the second (i) bright
fringe, (ii) dark fringe from the central maximum .
(b) How will the fringe pattern change if the screen is moved away from the slits?
A. 3 mm
B. 6 mm

C. 4 mm

D. 5 mm

Answer: B

- Watch Video Solution

40. An engine driver moving towards a wall with velocity of $50 \mathrm{~ms}^{-1}$ emits a note of frequnecy 1.2 kHz . The frequency of note after reflection from the wall as heard by the engine driver when speed of sound in air is $350 \mathrm{~ms}^{-1}$
is :

A. 2.4 kHz
B. 0.24 kHz
C. 1.6 kHz
D. 1.2 kHz

Answer: C
41. Displacement - time graphs for two waves,
wave - 1 and wave - 2 are shown here. The ratio of the intensity of wave- 1 to that of wave - 2 is

A. $1: 1$
B. 9: 4
C. 16: 9
D. 9:1

Answer: B

D Watch Video Solution

42. The power of sound from the speaker of radio is 10 W . Now, the power of sound from the speaker of the radio is increased to 400 W by increasing the volume of the radio. The power increased in dB as compared to original power is nearly
A. 8
B. 12
C. 13
D. 16

Answer: D

D Watch Video Solution

43. System shown in figure is released from rest . Pulley and spring is mass less and friction is absent everywhere. The speed of

5 kg block when 2 kg block leaves the constant of with ground is (force constant of spring $k=40 N / m$ and $\left.g=10 m / s^{2}\right)$

A. $\sqrt{2} m s^{-1}$
B. $2 \sqrt{2} m s^{-1}$
C. $2 m s^{-1}$
D. $4 \sqrt{2} m s^{-1}$

Answer: B

D Watch Video Solution
44. For the potential energy function shown in
fig. there will be an unstable equilibrium at
position

A. A
B. B
C. C
D. None of the above

Answer: B

- Watch Video Solution

45. A long spring is stretched by xcm its P.E. is

U . If the same spring is stretched by Nx cm the P.E. stored in it will become
A. U/N
B. NU
C. $N^{2} U$
D. U / N^{3}

Watch Video Solution

