©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 33

Physics

1. According to Bohr's theory, the time averaged magnetic field at the centre (i.e. nucleus) of a hydrogen atom due to the
motion of electrons in the $n^{\text {th }}$ orbit is
proportional to :
($\mathrm{n}=$ principal quantum number)
A. n
B. n^{-1}
C. n^{-3}
D. n^{3}

Answer: A

- Watch Video Solution

2. An excited He^{+}ion emits two photons in succession, with wavelength 108.5 nm and 30.4 nm, in making a transition to ground state.

The quantum number n, corresponding to its initial excited state is (for photon of wavelength λ, energy $E=\frac{1240 \mathrm{eV}}{\lambda(\text { in } \mathrm{nm})}$
A. $n=6$
B. $n=5$
C. $\mathrm{n}=7$
D. $\mathrm{n}=4$

Answer: B

D Watch Video Solution

3. A large number of particles are placed around the origin, each at a distance R from the origin. The distance of the center of mass of the system from the origin is
A. equal to R
B. less than or equal to R
C. greater than R

D. greater than or equal to R

Answer: B

D Watch Video Solution

4. A proton moving with a velocity of $0.125 \times 10^{5} \mathrm{~ms}^{-1}$ Collides with a stationary
helium atom. The velocity of the proton after the collision is

$$
\text { A. } 0.75 \times 10^{5} \mathrm{~ms}^{-1}
$$

B. $7.5 \times 10^{5} m s^{-1}$
C. $-0.75 \times 10^{5} \mathrm{~ms}^{-1}$
D. $0 m s^{-1}$

Answer: C

D Watch Video Solution

5.

$B_{H}=4 \times 10^{-5} T$ and $B_{V}=2 \times 10^{-5} T$,
then the Earth's total field (in T) at the place is
A. $6 \times 10^{-5} T$
B. $2 \sqrt{5} \times 10^{-5} T$
C. $4 \times 10^{-5} T$
D. $3 \times 10^{-5} T$

Answer: B

D Watch Video Solution

6. The distance moved by the screw of a screw gauge is $2 m m$ in four rotations and there are 50 divisions on its cap. When nothing is put
between its jaws, 20th divisions of circular scale coincides with reference line, and zero of
linear scale is hidden from circular scale when
two jaws touch each other or zero circular scale is laying above the reference line. When plate is placed between the jaws, main scale reads 2 divisions and circular scale reads 20 divisions. Thickness of plate is.
A. 1.5 mm
B. 1.2 mm
C. 1.4 mm

D. 1.6 mm

Answer: A

D Watch Video Solution

7. G_{1}, G_{2}, G_{3} are the conductances of three conductors. What will be their equivalent conductance when they are connected, (i) in series (ii) in parallel.
A. $\sigma_{1}+\sigma_{2}+\sigma_{3}$
B. $\frac{1}{\sigma_{1}}+\frac{2}{\sigma_{2}}+\frac{1}{\sigma_{3}}$
C. $\frac{\sigma_{1} \sigma_{2} \sigma_{3}}{\sigma_{1}+\sigma_{2}+\sigma_{3}}$
D. none of these

Answer: D

- Watch Video Solution

8. A $4 \mu F$ condenser is charged to 400 V and then its plates are joined through a resistance of $1 K \Omega$. The heat produced in the resistance is :
A. 0.16 J
B. 1.28 J
C. 0.64 J
D. 0.32 J

Answer: D

D Watch Video Solution

9. In the circuit shown, if the 10Ω resistance is replaced by 20Ω Then the amount of current
draw from the battery will be

A. 10 A
B. $4 A$
C. $8 A$
D. $2 A$

- Watch Video Solution

10. A current i is uniformly distributed over the cross section of a long hollow cylinderical wire of inner radius R_{1} and outer radius R_{2}. Magnetic field B varies with distance r form the axis of the cylinder is

B.

Answer: B

- Watch Video Solution

11. The average power dissipation in a pure capacitance in $A C$ circuit is
A. $2 C V^{2}$
B. $\frac{1}{2} C V^{2}$
C. zero
D. $C V^{2}$

Answer: C

- Watch Video Solution

12. The capacity of an isolated sphere is increased n times when it is enclosed by an
earthed concentric sphere. The ratio of their

radii is

$$
\begin{aligned}
& \text { A. } \frac{n^{2}}{n-1} \\
& \text { B. } \frac{n}{n-1} \\
& \text { C. } \frac{2 n}{n+1} \\
& \text { D. } \frac{2 n+1}{n+1}
\end{aligned}
$$

Answer: B

D Watch Video Solution

13. Two large parallel conducting plates are separated by 40 mm . The potential difference between the plates is V . Potential difference between points X and Y as indicated in the figure will be

A. $\frac{15}{40} V$
B. $\frac{V}{2}$
C. $\frac{25}{40} V$
D. V

Answer: B

D Watch Video Solution

14. Calculate the daily loss of energy by the earth, if the temperature gradient in the earth's crust is $32^{\circ} \mathrm{C}$ per km and mean
conductivity of the rock is 0.008 of CGS unit.
(Given radius of earth $=6400 \mathrm{~km}$)
A. $10^{30} \mathrm{cal}$
B. $10^{40} \mathrm{cal}$
C. $10^{20} \mathrm{cal}$
D. $10^{18} \mathrm{cal}$

Answer: D
(Watch Video Solution
15. Newton's law of cooling applies when a body is losing heat to its surroundings by
A. Conducting
B. convection
C. convection and radiation
D. conduction as well as radiation

Answer: C
(D) Watch Video Solution
16. One end of a thermally insulated rod is kept at a temperature T_{1} and the other at T_{2}. The rod is composed of two sections of length l_{1} and l_{2} and thermal conductivities
K_{1} and K_{2} respectively. The temperature at the interface of the two section is

A. $\frac{\left(K_{2} l_{2} T_{1}+K_{1} l_{1} T_{2}\right)}{\left(K_{1} l_{1}+K_{2} l_{2}\right)}$

$$
\begin{aligned}
& \text { B. } \frac{\left(K_{2} l_{1} T_{1}+K_{1} l_{2} T_{2}\right)}{\left(K_{2} l_{1}+K_{1} l_{2}\right)} \\
& \text { C. } \frac{\left(K_{1} l_{2} T_{1}+K_{2} l_{1} T_{2}\right)}{\left(K_{1} l_{2}+K_{2} l_{1}\right)} \\
& \text { D. } \frac{\left(K_{1} l_{1} T_{1}+K_{2} l_{2} T_{2}\right)}{\left(K_{1} l_{1}+K_{2} l_{2}\right)}
\end{aligned}
$$

Answer: C

D Watch Video Solution

17. One mole of a diatomic gas undergoes a thermodynamic process, whose process equation is $P \propto V^{2}$. The molar specific heat of the gas is
A. $\frac{17 R}{3}$
B. $\frac{17 R}{6}$
C. $\frac{15 R}{4}$
D. $\frac{15 R}{8}$

Answer: B

D Watch Video Solution

18. In an adiabatic expansion of air (assume it a mixture of N_{2} and O_{2}), the volume increases
by 5%. The percentage change in pressure is:
A. 7%
B. 6%
C. 4%
D. 3%

Answer: A

D Watch Video Solution

19. Two long parallel conductors carry currents
I and $2 I$ in the same direction. The magnetic
induction at a point exactly mid way between
them is B. If the current in the first conductor is reversed in direction, the magnetic induction at the same point will be

$$
\text { A. } \frac{B}{3}
$$

B. 2 B
C. 3B
D. $\frac{B}{2}$

Answer: C

D Watch Video Solution
20. A uniform electric field and a uniform magneitc field exist in a region in the same direction An electron is projected with velocity pointed in the same direction the electron will
A. be deflected to the left without increase
in speed
B. be deflected to the right without increase in speed
C. not be deflected but its speed will
decrease
D. not be deflected but its speed will increase

Answer: C

D Watch Video Solution

21. The horizontal range of an oblique projectile is equal to the distance through which a projectile has to fall freely from rest to acquire a velocity equal to the velocity of
projection in magnitude. The angle of projection is
A. 75°
B. 60°
C. 45°
D. 30°

Answer: A
(Watch Video Solution
22. When a body slides down an inclined plane
with coefficient of friction as μ_{k}, then its
acceleration is given by .
A. $g\left(\mu_{k} \sin \theta+\cos \theta\right)$
B. $g\left(\mu_{k} \sin \theta-\cos \theta\right)$
C. $g\left(\sin \theta+\mu_{k} \cos \theta\right)$
D. $g\left(\sin \theta-\mu_{k} \cos \theta\right)$

Answer: D

- Watch Video Solution

23. A block B is pushed momentarily along a horizontal surface with an initial velocity v. If μ is the coefficient of sliding friction between
B and the surface, block B will come to rest after a time:

A. $g \cdot \frac{\mu}{V}$
B. $\frac{g}{V}$
c. $\frac{V}{g}$
D. $\frac{V}{(g \mu)}$

Answer: D

- Watch Video Solution

24. When the radioactive isotope $.88 R a^{228}$
decays in series by the emission of 3α and 1β
particle, the isotope finally formed is
A. ${ }_{84} X^{228}$
B. ${ }_{86} X^{222}$
C. ${ }_{86} X^{216}$
D..${ }_{86} X^{215}$

Answer: C

D Watch Video Solution

25. In the following nuclear reaction 'x' stands

for $n \rightarrow p+e^{-}+x$.
A. $\alpha-$ particle
B. positron
C. nutrino
D. antinutrino

Answer: D

D Watch Video Solution

26. A horizontal platform with an object placed on it is executing SHM in the vertical direction
. The amplitude of oscillation is 2.5 cm what
must be the least period of these oscillations so that the object is not detached?
A. πs
B. $\frac{\pi}{5} s$
C. $\frac{\pi}{10} s$
D. $\frac{\pi}{15} s$

Answer: C
(Watch Video Solution
27. In a seconds pendulum, mass of bob is 30 gm . If it is replaced by 90 gm mass. Then its time period will
A. 1 s
B. 2 s
C. 4 s
D. 3 s

Answer: B

D Watch Video Solution
28. A hydrogen-like atom emits radiation of frequency $2.7 \times 10^{15} \mathrm{~Hz}$ when if makes a transition from $\quad n=2 \rightarrow n=1$. The
frequency emitted in a transition from $n=3 \rightarrow n=1$ will be
A. $3.2 \times 10^{15} \mathrm{~Hz}$
B. $32 \times 10^{15} \mathrm{~Hz}$
C. $1.6 \times 10^{15} \mathrm{~Hz}$
D. $16 \times 10^{15} \mathrm{~Hz}$

Answer: A
29. Electromagnetic radiations of wavelength
$2000 \AA$ are incident on a metal surface which
has a work function 5.01 eV The stopping potential for the given setup is
A. 1.19 eV
B. 6.19 eV
C. 3.19 eV
D. 4.19 eV

Answer: A

D Watch Video Solution

30. The image obtained with a convex lens is erect and its length is 4 times the length of the object. If the focal length of lens is 20 cm , calculate the object and image distances.
A. $u=60 \mathrm{~cm}, v=15 \mathrm{~cm}$
B. $u=20 \mathrm{~cm}, \mathrm{v}=10 \mathrm{~cm}$
C. $u=10 \mathrm{~cm}, \mathrm{v}=20 \mathrm{~cm}$

$$
\text { D. } u=15 \mathrm{~cm}, v=60 \mathrm{~cm}
$$

Answer: D

D Watch Video Solution

31. The instrument used by doctors for endoscopy work on the principle of
A. total internal reflection
B. reflection
C. refraction

D. none of these

Answer: A

- Watch Video Solution

32. A particle of mass m moves along line PC with velocity v as shown. What is the angular
momentum of the particle about P?

A. mvL
B. mvl
C. mvr
D. zero

Answer: D

- Watch Video Solution

33. The moment of inertia of a body about a given axis is $1.2 \mathrm{kgm}^{2}$. Initially, the body is at rest. In order to produce a rotational $K E$ of
$1500 j$, for how much duration, an acceleration of $25 \mathrm{rads}^{-2}$ must be applied about that axis ?
A. 4 s
B. 2 s
C. 8 s
D. 10 s

Answer: B

D Watch Video Solution

34. A disc is rolling (without slipping) on a
horizontal surface. C is its center and Q and
P are two points equidistant from C. Let
V_{P}, V_{Q} and V_{C} be the magnitude of velocities
of points P, Q and C respectively, then

A. $V_{Q}>V_{C}>V_{P}$
B. $V_{Q}<V_{C}<V_{P}$
C. $V_{Q}=V_{P}, V_{C}=\frac{1}{2} V_{P}$
D. $V_{Q}<V_{C}>V_{P}$

Answer: A
35. A solid homogeneous sphere is moving on
a rough horizontal surface, partly rolling and partly sliding. During the king of motion of the sphere.
A. total kinetic energy is conserved
B. angular momentum of the sphere about
the point of contact with the plane is
conserved

C. only the rotational kinetic energy about

 the centre of mass is conservedD. angular momentum about centre of mass is conversed

Answer: B

D Watch Video Solution

36. An alternating current can be converted into direct current by a
A. rectifier
B. dynamo
C. transformer
D. motor

Answer: A

- Watch Video Solution

37. The relation between α and β of a transistor is
A. $\frac{1}{\alpha}+\frac{1}{\beta}=1$
B. $\frac{1}{\alpha}=\beta+\frac{1}{\beta}$
C. $\frac{1}{\alpha}-\frac{1}{\beta}=0$
D. $\frac{1}{\alpha}-\frac{1}{\beta}=1$

Answer: D

D Watch Video Solution

38. State the equation corresponding to $8 g$ of
O_{2} is
A. $P V=8 R T$
B. $P V=\frac{R T}{4}$
C. PV =RT
D. $P V=\frac{R T}{2}$

Answer: B

D Watch Video Solution

39. In Young's double slit experiment, the intensity of central maximum is I. What will be
the intensity at the same place if one slit is closed?
A. same as
B. twice
C. four times
D. half

Answer: C
(Watch Video Solution
40. The sodium yellow doubled has
wavelength $5890 \AA$ and $\lambda \AA(\lambda \gg 5890 \AA)$
and resolving power of a grating to resolve these lines is 982 , then value of λ is
A. $5896 \AA$
B. $5880 \AA$
C. $5869 \AA$
D. $5876 \AA$

Answer: A
41. A whistle giving out 450 HZ approaches a stationary observer at a speed of $33 \mathrm{~m} / \mathrm{s}$. The frequency heard the observer (in $H Z$) is (speed of sound $=330 \mathrm{~m} / \mathrm{s}$)
A. 409
B. 429
C. 517
D. 500

Answer: D

D Watch Video Solution

42. How Many times more intense is a 60 dB sound than a 30 dB sound?
A. 1000
B. 2
C. 100
D. 4

Answer: A

D Watch Video Solution

43. Two vibrating strings of the same material
but lengths L and $2 L$ have radii $2 r$ and r respectively. They are stretched under the same tension. Both the string vibrate in their fundamental nodes, the one of length L with freuqency v_{1} and the other with frequency v_{2}. the ratio v_{1} / v_{2} is given by
A. 1
B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. 2

Answer: A

- Watch Video Solution

44. A spring of force constant k extends by a length X on loading. If T is the tension in the spring then the energy stored in the spring is
A. $\frac{T^{2}}{2 k}$
B. $\frac{T^{2}}{2 k^{2}}$
C. $\frac{2 k}{T^{2}}$
D. $\frac{2 T^{2}}{k}$

Answer: A

D Watch Video Solution

45. In the figure, block A is released from rest when the spring is its natural length for the block B of mass m to leave contact with the
ground at some stage what should be the minimum mass of block A ?

A. 2 M
B. M
C. $\frac{M}{2}$
D. $\frac{M}{4}$

Answer: C

- Watch Video Solution

