©゙’doubtnut

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 35

Physics

1. Consider a rubber ball freely falling from a
height $\mathrm{h}=4.9 \mathrm{~m}$ on a horizontal elastic plate.

Assume that the duration of collision is
negligible and the collision with the plate is
totally elastic. Then the velocity as a function
of time and the height as a function of time
will be:
A. ${ }^{\circ}$
B. $N: W m$
C.N
D. $4 \sqrt{n}$.

Answer: C

2. A coin placed on a rotating table just slip
when it is placed at a distance 4 r from the centre, on doubling the angular velocity of the table, the coin will just slip now the coin is at a distance from centre is
A. 4 r
B. $2 r$
C. r
D. $r / 4$

Answer: C

D Watch Video Solution

3. A square coil of side 25 cm having 1000 turns
is rotated with a uniform speed in a magnetic
field about axis perpendicular to the direction of the field. At an instant t, the e.m.f. induced in the coil is $e=200 \sin 100 \pi t$. The magnetic induction is
A. 0.02 T
B. $10^{-3} \mathrm{~T}$
C. 0.1 T
D. 0.01 T

Answer: D

- Watch Video Solution

4. Three charges $-q_{1},+q_{2}$ and $-q_{3}$ are placed as shown in the figure. The x-component of
the force on $-q_{1}$ is proportional to

A. $\frac{q_{2}}{b^{2}}-\frac{q_{3}}{a^{2}} \sin \theta$
B. $\frac{q_{2}}{b^{2}}-\frac{q_{3}}{a^{2}} \cos \theta$
C. $\frac{q_{2}}{b^{2}}+\frac{q_{3}}{a^{2}} \sin \theta$
D. $\frac{q_{2}}{b^{2}}+\frac{q_{3}}{a^{2}} \cos \theta$

Answer: C

- Watch Video Solution

5. A positive point charge is released from rest at a distance r_{0} from a positive line charge with uniform density. The speed (v) of the point charge, as a function of instantaneous
distance r from line charge, is proportional to:

A. $v \propto\left(\frac{r}{r_{0}}\right)$
B. $v \propto \sqrt{\ln \left(\frac{r}{r_{0}}\right)}$
C. $v \propto \ln \left(\frac{r}{r_{0}}\right)$
D. $v \propto e^{+r / r_{0}}$

Answer: B

D Watch Video Solution

6. A copper rod of length 75 cm and an iron
rod of length 125 cm are joined together end to end. Both are of circular cross section with diameter 2 cm . The free ends of the copper and iron are maintained at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively . The surface of the bars are insulated thermally. The temperature of the copper -iron junction is [Thermal conductivity
of the copper is $386.4 W / m-K$ and that of iron is $48.46 W / m-K]$.
A. $100^{\circ} C$
B. $0^{\circ} C$
C. $93^{\circ} C$
D. $50^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

7. n mole of He and 2 n mole of O_{2} is mixed in a
container. Then $\left(\frac{C_{p}}{C_{v}}\right)_{m i x}$ will be
A. $\frac{19}{13}$
B. $\frac{13}{19}$
C. $\frac{13}{6}$
D. $\frac{6}{13}$

Answer: A

8. Four charged particles are projected perpendicularly into the magnetic field with equal velocity. Which will have minimum frequency of rotation?
A. Proton
B. Electron
C. $L i^{+}$
D. He^{+}

Answer: C
9. A ball of mass 0.2 kg moves with a velocity of
$20 \mathrm{~m} / \mathrm{sec}$ and it stops in 0.1 sec , then the force on the ball is
A. 40 N
B. 20 N
C. 4 N
D. 2 N

Answer: A

D Watch Video Solution
10. An open capillary tube is lowered in vessel with mercury. The difference between the levels of the mecury in the vessel and in the capillary tube $\triangle h=4.6 \mathrm{~mm}$. What is the radius of curvature of the mercury meniscus in the capillary tube? Surface tension of mercury is $0.46 \mathrm{~N} / \mathrm{m}$, density of mercury is $13.6 \mathrm{gm} / \mathrm{cc}$.
A. $\frac{1}{340} m$
B. $\frac{1}{680} m$
C. $\frac{1}{1020} m$

D. information is insufficient

Answer: B

- Watch Video Solution

11. The radii and Young's moduli of two uniform wires A and B are in the ratio $2: 1$ and

1:2 respectively. Both wires are subjected to the same longitudinal force. If the increase in
leangth of the wire A is one percent, the percentage increae in length of the wire B is
A. 1.0
B. 1.5
C. 2.0
D. 3.0

Answer: C

D Watch Video Solution

12. The following figure shows the multiple reflections of a light ray along a glass corridor where the walls are either parallel or
perpendicular to one another. If the angle of
incidence at point P is 30°, then the angles of reflection of the light ray at points $\mathrm{Q}, \mathrm{R}, \mathrm{S}$ and T respectively are

A. $30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}$
B. $30^{\circ}, 60^{\circ}, 30^{\circ}, 60^{\circ}$
C. $30^{\circ}, 60^{\circ}, 60^{\circ}, 30^{\circ}$

$$
\text { D. } 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}
$$

Answer: C

D Watch Video Solution

13. There are two identical spherical balls of same material one being solid and the other being hollow. Then they can be distinguished by
A. By spinning them using equal torques
B. By determining their moment of inertia
C. By rolling them down an inclined plane
D. By any one of these methods

Answer: D

D Watch Video Solution

14. A fluid having a thermal coefficient of volume expansion γ is filled in a cylindrical vessel up to a height h_{0}. The coefficient of
linear thermal expansion of the material of the
vessel is α. If the fluid is heated with the
vessel , then find the level of liquid when
temperature increases by $\Delta \theta$.

$$
\begin{aligned}
& \text { A. } \frac{h_{0}(1+\gamma \Delta \theta)}{(1+2 \alpha \Delta \theta)} \\
& \text { B. } \frac{h_{0}(1+\gamma \Delta \theta)}{(1+3 \alpha \Delta \theta)} \\
& \text { C. } \frac{h_{0}(1+\gamma \Delta \theta)}{(1+\alpha \Delta \theta)} \\
& \text { D. } h_{0}(1+\gamma \Delta \theta)
\end{aligned}
$$

Answer: A

D Watch Video Solution

15. In a hall, a person receives direct sound waves from a source $120 m$ away. He also receives waves from the same source which reach him after being reflected from the $25 m$ high ceiling at a point halfway between them.

The two waves interfere constructively for wavelengths (in metres)
A. $20, \frac{20}{3}, \frac{20}{3}$, etc.
B. 10,5,2.5 etc
C. 10,20,30 , etc
D. $15,25,35$ etc

Answer: A

D Watch Video Solution

16. A 20 cm long string, having a mass of 1.0 g ,
is fixed at both the ends. The tension in the
string is 0.5 N . The string is set into vibrations using an external vibrator of frequency 100 Hz .

Find the separation (in cm) between the successive nodes on the string.
A. 5
B. 3
C. 2
D. 1

Answer: A

D Watch Video Solution

17. A particle moves in a straight line with retardation proportional to its displacement.

Its loss in kinetic energy for any displacement
x is proportional to
A. x^{2}
B. e^{x}
C. x
D. $\log e^{x}$

Answer: A

- Watch Video Solution

18. In an electron gun, the electrons are accelerated by the potential V. If the e is the
charge and m is the mass of the electron, then
the maximum velocity of these electrons will be

$$
\begin{aligned}
& \text { A. } \frac{2 e V}{m} \\
& \text { B. } \sqrt{\frac{2 e V}{m}} \\
& \text { C. } \sqrt{\frac{2 m}{e V}} \\
& \text { D. } \frac{V^{2}}{2 e m}
\end{aligned}
$$

Answer: B
(Watch Video Solution
19. Two concentric and coplanar coils have radii a and $b(\gg a)$ as shows in Fig.

Resistance of the inner coil is R. Current in the outer coil is increased from 0 to i, then the total charge circulating the inner coil is

A. $\left(\frac{2 \mu_{0} i}{\pi b}\right) \frac{a^{2}}{R}$
B. $\left(\frac{2 \mu_{0} i}{b}\right) \frac{\pi a^{2}}{R}$
C. $\left(\frac{\mu_{0} i}{b}\right) \frac{\pi a^{2}}{R}$
D. $\left(\frac{\mu_{0} i}{2 b}\right) \frac{\pi a^{2}}{R}$

Answer: D

D Watch Video Solution

20. In an circuit, V and I are given by
$V=150 \sin (150 t) V$ and
$I=150 \sin \left(150 t+\frac{\pi}{3}\right) A$.
The power
dissipated in the circuit is
A. zero
B. 5625 W
C. 150 W
D. 106 W

Answer: B

D Watch Video Solution

21. The electric field in a certain region is acting radially outwards and is given by
$E=A r$. A charge contained in a sphere of
radius ' a ' centered at the origin of the field, will given by
A. $4 \pi \in \in_{0} A a^{2}$
B. $A \pi \in_{0} a^{2}$
C. $4 \pi \in_{0} A a^{3}$
D. $\in_{0} A a^{3}$

Answer: C

- Watch Video Solution

22. An artifical satellite of mass ' m ' is moving in
a circular orbit aroundthe earth. The height of
the satellite above the surface of the earth is
R. Suppose that it stops suddenly in its orbit and falls freely under gravity. With what speed
it will strike the surface of the earth?
A. $\sqrt{g R}$
B. $2 \sqrt{g R}$
C. $3 \sqrt{g R}$
D. $5 \sqrt{g R}$

Answer: A

- Watch Video Solution

23. A solid cube and a solid sphere of the same material have equal surface area. Both are at the same temperature $120^{\circ} \mathrm{C}$, then
A. both of them will cool down at the same rate
B. the cube will cool down slower than the
C. the sphere will cool down slower than the cube
D. the information is insufficient

Answer: C

D Watch Video Solution

24. The angle of a prism is 60° and its refractive index is $\sqrt{2}$. The angle of minimum deviation suffered by a ray of light in passing through it is
A. About 20°
B. 30°
C. 60°
D. 45°

Answer: B

D Watch Video Solution
25. A wheel rotating at an angular speed of 20
$\mathrm{rad} / \mathrm{s}$ is brought to rest by a constant torque
in 4.0 seconds. If the moment of inertia of the
wheel about the axis of rotation is 0.20
$k g-m^{2}$ find the work done by the torque in
the first two seconds.
A. 10 J
B. 20 J
C. 30 J
D. 40 J

Answer: C

D Watch Video Solution
26. A mixture of two gases is contained in a vessel. The Gas 1 is monoatomic and gas 2 is diatomic and the ratio of root mean square speeds of the molecules of two gases is
A. 2
B. 4
C. 8
D. 16

Answer: A

- Watch Video Solution

27. Yellow light emitted by sodium lamp in

Young's double slit experiment is replaced by monochromatic blue light of the same intensity:
A. fringe width will decrease
B. fringe width will increase
C. fringe width will remain unchanged
D. fringe width will become less intense

- Watch Video Solution

28. A train moves towards a stationary observer with speed $34 m / s$. The train sounds
a whistle and its frequency registered by the observer is f_{1}. If the train's speed is reduced to
$17 \mathrm{~m} / \mathrm{s}$, the frequency registered is f_{2}. If the speed of sound of $340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is

$$
\begin{aligned}
& \text { A. } \frac{18}{19} \\
& \text { B. } \frac{1}{2}
\end{aligned}
$$

C. 2

$$
\text { D. } \frac{19}{18}
$$

Answer: D

- Watch Video Solution

29. The length of a stretched wire is 1 m and
its fundamental frequency is 300 Hz .What is
the speed of the transverse wave in the wire?
A. $330 m s^{-1}$
B. $660 \mathrm{~ms}^{-1}$
C. $990 m s^{-1}$
D. $550 \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

30. A shell in flight explodes into n equal fragments k of the fragments reach the ground earlier than the other fragments. The
acceleration of their centre of mass

subsequently will be

A. G
B. $(n-k) g$
C. $\frac{(n-k) g}{k}$
D. $\frac{(n-k) g}{k} g$

Answer: D

D Watch Video Solution

31. In a circular motion of a particle, the tangential acceleration of the particle is given by $a_{t}=9 m s^{-2}$. The radius of the circle is 4 m
. The particle was initially at rest. Time after which total acceleration of the particle makes an angle of 45° with the radial acceleration is
A. $\frac{1}{3} s$
B. $\frac{2}{3} s$
C. $\frac{5}{3} s$
D. $\frac{4}{3} s$

Answer: B

D Watch Video Solution

32. The area enclosed by a hysteresis loop is a measure of
A. Retentivity
B. Susceptibility
C. Permeability

D. Heat energy lost per unit volume in the

 sample
Answer: D

D Watch Video Solution

33. A 6 V battery is connected to the terminals
of a 3 m long wire of uniform thickness and
resistance of 100Ω. The difference of potential
between two points on the wire separated by
a distance of 50 cm will be
A. 1.5 V
B. 3.0 V
C. 1.0 V
D. 2.0 V

Answer: C

D Watch Video Solution

34. the least count of the main scale of a screw

divisions on its circular scale required to measure $5 \mu m$ diameter of a wire is :
A. 500
B. 100
C. 50
D. 200

Answer: D
(Watch Video Solution
35. A particle is projected in the $X-Y$ plane.

2 sec after projection the velocity of the particle makes an angle 45° with the X axis. 4 sec after projection, it moves horizontally. Find the velocity of projection (use $g=10 \mathrm{~ms}^{-2}$).
A. $20 \sqrt{5} \mathrm{~ms}^{-1}$
B. $10 \sqrt{5} \mathrm{~ms}^{-1}$
C. $5 \sqrt{5} m s^{-1}$
D. $2 \sqrt{5} m s^{-1}$

Answer: A

D Watch Video Solution

36. ${ }_{.90} T h^{232} \rightarrow{ }_{.82} P b^{208}$. The number of α and β - particles emitted during the above reaction is
A. 6,4
B. 3 ,3
C. 4,6
D. 6, 6

- Watch Video Solution

37. The half-life of.$^{215} A t$ is $100 \mu s$. The time taken for the radioactivity of a sample of .${ }^{215} A t$ to decay to $1 / 16^{\text {th }}$ of its initial value is
A. $400 \mu s$
B. $6.3 \mu s$
C. $40 \mu s$
D. $300 \mu s$

Answer: A

D Watch Video Solution

38. Water rises to a height of 2 cm in a capillary tube. If the tube is tilted 60° from
the vertical, water will rise in the tube to a length of
A. 4 cm
B. 2 cm
C. 1 cm
D. 8 cm

Answer: A

D Watch Video Solution

39. If the error in the measurement of momentum is 20%, then the error in the calculation of kinetic energy is (assume the error in measurement of m as zero)
A. 20%
B. 44%
C. 40%
D. 200%

Answer: C

D Watch Video Solution

40. What happens to the interference pattern
if the two slits in Young's experiment are
illuminated by two independent sources such
as two sodium lamps S and S^{\prime} as shown in
figure

A. The intensity of the bright fringes is
doubled

B. The intensity of the bright fringes

C. Two sets of interference fringes overlap
D. No interference pattern is observed

Answer: D

D Watch Video Solution

41. A block of mass m is placed over rough inclined plane having inclination 30°.The coefficient of friction between the block and inclined plane is 0.75 .The contact force on the block is $\frac{x}{4} m g$. Find the value of x

3
 A. $\frac{3}{4} m g$
 B. 2 mg
 C. $\frac{5}{4} m g$
 D. mg

Answer: D
(Watch Video Solution
42. In photoelectric effect, photocurrent
A. increases with increase of frequency of incident photon
B. decreases with increase of frequency of
incident photon
C. does not depend on the frequency of
photon but depends only on intensity of
incident light
D. depends both on intensity and
frequency of incident beam

- Watch Video Solution

43. A vessel of depth $2 h$ is half filled with a
liquid of refractive index $2 \sqrt{2}$ and the upper half with another liquid of refractive index $\sqrt{2}$.

The liquids are immiscible. The apparent depth of the inner surface of the bottom of vessel will be:

$$
\begin{aligned}
& \text { A. } \frac{h}{\sqrt{2}} \\
& \text { B. } \frac{1}{2(\sqrt{2+1})} \\
& \text { C. } \frac{h}{3 \sqrt{2}}
\end{aligned}
$$

D. $\frac{3 \sqrt{2} h}{4}$

Answer: D

D Watch Video Solution

44. An open organ pipe is closed suddenly with the result
that the second overtone of the closed pipe is
found
to be higher in frequency by 100 than the first
overtone of the original pipe. Then, the
fundamental
frequency of the open pipe is
A. $200 s^{-1}$
B. $100 s^{-1}$
C. $250 s^{-1}$
D. $150 s^{-1}$

Answer: A

D Watch Video Solution
45. The correct measure of magnetic hardness of a material is
A. remanant magnetism
B. hysterses loss
C. coercivity
D. curie temperature

Answer: C

- Watch Video Solution

