# ©゙’doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - NTA MOCK TESTS

## NTA NEET SET 36

Physics

1. A nuclear reactor delivers a power of $10^{9} \mathrm{~W}$.

What is the amount of fuel consumed by the
reactor in one hour?
A. $6 \cdot 610^{-5} g$
B. $0.96 g$
C. $4 \times 10^{-2} g$
D. $0.8 g$

## Answer: C

## D Watch Video Solution

2. A photelectric material having work-function
$\phi_{0}$ is illuminated with light of wavelength
$\lambda\left(\lambda<\frac{h c}{\lambda_{0}}\right)$. The fastest photoelectron has
a de Broglie wavelength $\lambda_{d}$. A change in wavelength of the incident light by $\Delta \lambda$ results in a change $\Delta \lambda_{d}$ in $\lambda_{d}$. Then the ratio $\Delta \lambda_{d} / \Delta \lambda$ is proportional to
A. $\frac{\lambda_{d}^{3}}{\lambda^{2}}$
B. $\frac{\lambda_{d}^{3}}{\lambda}$
c. $\frac{\lambda_{d}^{2}}{\lambda^{2}}$
D. $\frac{\lambda_{d}}{\lambda}$

Answer: A
3. Resistance of a conductor increases with the rise of temperature, because
A. the collisions of the conducting
electrons with the electrons increases
B. the collisions of the conducting
electrons with the lattice consisting of
the ions of the metal increase
C. the number of conduction electrons decrease
D. the number of conduction electrons increases

Answer: B

## D Watch Video Solution

4. A solid sphere of mass $M$ and radius $R$ has a spherical cavity of radius $R / 2$ such that the centre of cavity is at a distance $R / 2$ from the
centre of the sphere. A point mass $m$ is placed
inside the cavity at a distance $\mathrm{R} / 4$ from the centre of sphere. The gravitational force on mass $m$ is

$$
\begin{aligned}
& \text { A. } \frac{11 G M m}{R^{2}} \\
& \text { B. } \frac{14 G m m}{R^{2}} \\
& \text { C. } \frac{G m m}{2 R^{2}} \\
& \text { D. } \frac{G M m}{R^{2}}
\end{aligned}
$$

## Answer: C

5. Which of the following graphs correctly represents the relation between $\ln (E)$ and $\ln$
( T ), where E is the amount of radiation emitted per unit time from a unit area of the body and T is the absolute temperature?




## Answer: C

## - Watch Video Solution

6. What is de Broglie wavelength of a bullet of mass 0.040 kg travelling at a speed of 1.0 km/sec ?
A. $1.66 \times 10^{-34} \mathrm{~m}$
B. $1.66 \times 10^{-35} m$
C. $1.66 \times 10^{-32} \mathrm{~m}$
D. $1.66 \times 10^{-33} \mathrm{~m}$

Answer: B

## D Watch Video Solution

7. $A$ potentiometer wire $A B$ having length $L$ and resistance $12 r$ is joined to a cell $D$ of emf
$\varepsilon / 2$ and internal resistance $3 r$ is connected.

The length AJ at which the galvanometer as
shown in fig. Shows no deflection is :

A. $\frac{5}{12} L$
B. $\frac{11}{24} L$
C. $\frac{11}{12} L$
D. $\frac{13}{24} L$

## Answer: D

## D Watch Video Solution

8. The molar specific heat of oxygen at constant pressure $C_{P}=7.03 \mathrm{cal} / \mathrm{mol} .{ }^{\circ} \mathrm{C}$ and $R=8.31 \mathrm{~J} / \mathrm{mol} .{ }^{\circ} \mathrm{C}$. The amount of heat taken by 5 mol of oxygen when heated at constant volume from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ will be approximately.
A. 25 cal
B. 50 cal
C. 253 cal
D. 500 cal

## Answer: C

## D Watch Video Solution

## 9. A sample of radioactive material has mass $m$

, decay constant $\lambda$, and molecular weight $M$.
Avogadro constant $=N_{A}$. The initial activity of the sample is:
A. $\lambda m$
B. $\frac{\lambda m}{M}$
C. $\frac{\lambda m N_{A}}{M}$
D. $m N_{A} e^{\lambda}$

## Answer: C

## D Watch Video Solution

10. If the distance between the sun and the earth is increased by four times then the attraction between the two will
A. 4 times
B. 8 times
C. $\frac{1}{4}$ times
D. $\frac{1}{8}$ times

Answer: B

D Watch Video Solution
11. Oxygen boils at $-183^{\circ} \mathrm{C}$. This temperature is approximately
A. $-297.4^{\circ} F$
B. $-253.6^{\circ} F$
C. $-342.6^{\circ} F$
D. $-225.3^{\circ} F$

Answer: A

## D Watch Video Solution

12. In a potentiometer arrangement, a cell of

EMF 2 V gives a balance point at 40 cm length of the wire. If this cell is replaced by another
cell and the balance point shifts to 60 cm , then the EMF of the second cell is
A. 1 V
B. 2 V
C. 3 V
D. 4 V

Answer: C
( Watch Video Solution
13. A point on the periphery of a rotating disc
has its acceleration vector making angle of $30^{\circ}$ with the velocity. The ratio $\left(a_{c} / a_{t}\left(a_{c}\right.\right.$ is centripetal acceleration and $a_{1}$ is tangential acceleration) equals
A. $\sin 30^{\circ}$
B. $\cos 30^{\circ}$
C. $\tan 30^{\circ}$
D. none of these

Answer: C

## - Watch Video Solution

14. A tuning fork of frequency n is held near the open end of tube, the tube is adjusted until resonance occurs. If the two shortest lengths to produce resonance are $L_{1}$ and $L_{2}$, then the speed of the sound is

$$
\text { A. } n\left(L_{2}-L_{1}\right)
$$

$$
\text { B. } \frac{n\left(L_{2}-L_{1}\right)}{2}
$$

$$
\text { C. } 4 n\left(L_{2}-L_{1}\right)
$$

$$
\text { D. } 2 n\left(L_{2}-L_{1}\right)
$$

## Answer: D

## D Watch Video Solution

15. One mole of monatomic ideal gas
undergoes the process $A \rightarrow B$, as in the given $P-V$ diagram. The specific heat for
this process is

A. $\frac{3 R}{2}$
B. $\frac{15 R}{7}$
C. $\frac{30 R}{7}$
D. $\frac{20 R}{7}$

Answer: B

## D Watch Video Solution

16. A hospital uses an ultrasonic scanner to
locate tumours in a tissue.What is the wavelength of sound in the tissue in which the speed of sound is $1.7 \mathrm{kms}^{-1}$ ? The operating frequency of the scanner is 4.2 MHz .

$$
\text { A. } 4.1 \times 10^{-4} m
$$

B. $1.1 \times 10^{-4} m$

## C. $3.1 \times 10^{-4} m$

D. $4.1 \times 10^{-3} \mathrm{~m}$

## Answer: A

## D Watch Video Solution

17. A boy is pushing a box on horizontal floor from a position of rest to rest, while moving along a straight line. Consider the three phases of motion. The floor is rough with a small friction coefficient .
(i) Initially a constant hard push on the box to get it moving and attain a maximum velocity .
(ii) Mild push to keep the box moving with constant velocity
(iii) To pull back the box the to bring it to stop with the same retardation.

Which of the following graph is CORRECT ?
A.

B.


Force exerted
by worker
C.


## Answer: C

## D Watch Video Solution

18. The stream of a river is flowing with a speed of $2 \mathrm{~km} / \mathrm{h}$. A swimmer can swim at a speed of $4 \mathrm{~km} / \mathrm{h}$. What should be the direction of the swimmer with respect to the flow of the river to cross the river straight?
A. $150^{\circ}$
B. $90^{\circ}$
C. $120^{\circ}$
D. $60^{\circ}$

## Answer: C

## D Watch Video Solution

19. A coil in the shape of an equilateral triangle of side $I$ is suspended between the pole pieces of a permanent magnet such that $\vec{B}$ is in the plane of the coil. If due to a current $i$ in the
triangle a torque $\tau$ acts on it, the side I of the
triangle is

$$
\begin{aligned}
& \text { A. } 2\left(\frac{\tau}{\sqrt{3} B I}\right)^{\frac{1}{2}} \\
& \text { B. } \frac{2}{\sqrt{3}}\left(\frac{\tau}{B I}\right) \\
& \text { C. } 2\left(\frac{\tau}{B I}\right)^{\frac{1}{2}} \\
& \text { D. } \frac{1}{\sqrt{3}} \frac{\tau}{B I}
\end{aligned}
$$

Answer: A

## D Watch Video Solution

20. A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300 K .

The ratio of the average rotational kinetic energy per $O_{2}$ molecules to that per $N_{2}$ molecules is
A. 1:1
B. $1: 2$
C. $1: 2$
D. depends on the moment of inertia of the

Answer: A

## D Watch Video Solution

21. Certain amount of an ideal gas is contained
in a closed vessel. The vessel is moving with a
constant velcity $v$. The molecular mass of gas
is $M$. The rise in temperature of the gas when
the vessel is suddenly stopped is $\left(\gamma C_{P} / C_{V}\right)$

$$
\begin{aligned}
& \text { A. } \frac{M v^{2}(\gamma-1)}{2 R} \\
& \text { B. } \frac{M v^{2}(\gamma+1)}{2 R}
\end{aligned}
$$

C. $\frac{M v^{2}}{2 R \gamma}$
D. $\frac{M v^{2}}{2 R(\gamma+1)}$

Answer: A

## D Watch Video Solution

22. Average power in the L-C-R circuit depends

## upon

A. current
B. phase difference only

## C. EMF

## D. current, EMF and phase difference

## Answer: D

## D Watch Video Solution

23. A bar magnet is dropped along the axis of copper ring held horizontally. The acceleration of fall is
A. equal to the acceleration due to gravity at that place
B. less than the acceleration due to gravity
at that place
C. greater than the acceleration due to
gravity at that place
D. twice the acceleration due to gravity at
that place

## Answer: B

24. Two blocks $A$ and $B$ of masses $m$ and $2 m$, respectively, are connected by a massless spring of force constant $k$ and are placed on a smooth horizontal plane. The spring is stretched by an amount x and then released.

The relative velocity of the blocks when the spring comes to its natural length is $\mathrm{A}-00000$
A. $\left(\sqrt{\frac{3 k}{2 m}}\right) x$
B. $\left(\sqrt{\frac{2 k}{3 m}}\right) x$
C. $\sqrt{\frac{2 x k}{m}}$
D. $\sqrt{\frac{3 k m}{2 x}}$

Answer: A

## D Watch Video Solution

25. A particle of mass ' $m$ ' moves along the quarter section of the circular path whose centre is at the origin. The radius of the circular path is ' $a$ '. A force $\vec{F}=y \hat{i}-x \hat{j}$
newton acts on the particle, where $x, y$ denote the coordinates of position of the particle.

Calculate the work done by this force in taking,
the particle from point, $A(a, 0)$ to point $B(0, a)$ along the circular path.


$$
\text { A. }-\sqrt{2} a^{2} J
$$

> B. $-\frac{\pi a^{2}}{4} J$
> C. $-a^{2} J$
> D. $-\frac{\pi a^{2}}{2} J$

## Answer: D

## D Watch Video Solution

26. $A$ rod $A B$ of length $L$ and mass $M$ is free to move on a frictionless horizontal surface. It is moving with a velocity v , as shown in figure.

End $B$ of rod $A B$ strikes the end of the wall.

Assuming elastic impact, the angular velocity of the $\operatorname{rod} A B$, just after

A. $\frac{v}{2 L}$
B. $\frac{3 v}{L}$
C. $\frac{3 v}{2 L}$
D. $\frac{v}{L}$

Answer: B

## Watch Video Solution

27. The plots of intensity versus wavelength for three black bodies at temperature $T_{1}, T_{2}$ and $T_{3}$ respectively are as shown. Their temperatures are such that

A. $T_{1}>T_{2}>T_{3}$
B. $T_{1}>T_{3}>T_{2}$
C. $T_{2}>T_{3}>T_{1}$
D. $T_{3}>T_{2}>T_{1}$

Answer: B

## - Watch Video Solution

28. Imagine that an electron revolves around a circle of the radius $5.3 \times 10^{-11} \mathrm{~m}$ with a linear speed of $7.5 \times 10^{4} \mathrm{~ms}^{-1}$ in a hydrogen atom.

The magnetic field produced at the centre of the circle, due to the electron, is

A. $43 W b m^{-2}$<br>B. $4300 \mathrm{Wbm}^{-2}$<br>C. $0.43 W^{-2}$<br>D. $43 \times 10^{-4} W_{b m}{ }^{-2}$

Answer: C

## D Watch Video Solution

29. The displacement of a particle from its mean position (in metre) is given by $y=0.2 \sin (10 \pi t+1.5 \pi) \cos (10 \pi t+1.5 \pi)$ The motion of the particle is
A. periodic but not S.H.M
B. non - periodic
C. simple harmonic motion with a period
0.1 s
D. simple harmonic motion with a period
0.2 s

Answer: C

## D Watch Video Solution

30. The maximum kinetic energy of a photoelectron is 3 eV . What is its stopping potential ?
A. 3 V
B. 1 V
C. 6 V
D. 2 V

## Answer: A

## - Watch Video Solution

31. Figure here shows the vertical cross-section of a vessel filled with a liquid of density $\rho$. The normal thrust per unit area on the walls vessel at point. $P$, as shown, will be

A. $h \rho g$
B. $H \rho g$
C. $(H-h) \rho g$
D. $(H-h) \rho g \cos \theta$

## Answer: C

## D Watch Video Solution

32. Two identical thin isosceles prims of refracting angle $\theta$ and refractive index $\mu$ are placed with their bases touching each other. A
parallel beam, of width $2 b$, is incident on this
system, as shown. The distance of the point of convergence from the prism is

A. $\frac{b}{(\mu-1) \theta}$
B. $\frac{b}{2(\mu-1) \theta}$
C. $\frac{2 b}{(\mu-1) \theta}$
D. $\frac{b \theta}{(\mu-1) \theta}$

Answer: A

## - Watch Video Solution

33. A uniform straight rod is placed in vertical position on a smooth horizontal surface and released. As the rod is in motion, the centre of mass moves
A. the centre of rod follows straight line path
B. the centre mass follows circular path

# C. the instantaneous axis is passing 

 through the contact pointD. all of above

## Answer: A

## D Watch Video Solution

34. Zener diodes have higher dopant densities
as compared to ordinary $\mathrm{p}-\mathrm{n}$ junction diodes.

This
A. decrease the width of depletion layer as
well as electric field
B. increase the width of depletion layer as
well as electric field
C. decrease the width of depletion layer
but increase the electric field
D. increases the width of depletion layer but decrease the electric field

## Answer: C

35. A metal sphere of radius $r$ and specific heat
$s$ is rotated about an axis passing through its
centre at a speed of n rotation/s. It is suddenly
stopped and $50 \%$ of its energy is used in
increasing its temperature. Then, the rise in
temperature of the sphere is

$$
\begin{aligned}
& \text { A. } \frac{2 \pi^{2} n^{2} r^{2}}{5 S} \\
& \text { B. } \frac{\pi^{2} n^{2}}{10 r^{2} S} \\
& \text { C. } \frac{7}{8} \pi r^{2} n^{2} S
\end{aligned}
$$

D. $\frac{5(\pi r n)^{2}}{14 S}$

Answer: A

## D Watch Video Solution

36. The voltage and current in a conductor are measured as $(50 \pm 2) V$ and $(5 \pm 0.2) A$ The percentage error in the calculation of resistance is
A. $4 \%$
B. $5 \%$
C. $7 \%$
D. $8 \%$

## Answer: D

## D Watch Video Solution

37. Light of wavelength $6328 \AA$ is incident normally on a slit of width 0.2 mm . Angular width of the central maximum on the screen will be :
A. $0.9^{\circ}$
B. $0.18^{\circ}$
C. $0.54^{\circ}$
D. $0.36^{\circ}$

## Answer: D

## D Watch Video Solution

38. Tube $A$ has both ends open while tube $B$ has one closed, otherwise they are identical.

The ratio of fundamental frequency of tube $A$ and $B$ is
A. $1: 2$
B. 1: 4
C. $4: 1$
D. 2:1

Answer: D
( Watch Video Solution
39. Two identical coaxial circular loops carry a current $i$ each circulating in the same direction. If the loops approach each other the current in
A. the current in each loop will decrease
B. the current in each loop will increase
C. the current in each loop will remain the
same
D. the current in each loop will increase
and in the other loop will decrease

## Answer: A

## D Watch Video Solution

40. An object is projectile with velocity $k v_{e}$ in
vertically upward direction from the ground into the space ( $v_{e}$ is escape velocity and $k<1$ ). If air resistance is considered to be negligible then the maximum height from the centre of earth to which it can go, will be : $R$ =radius of earth)
A. $\frac{R}{k^{2}+1}$
B. $\frac{R}{k^{2}-1}$
C. $\frac{R}{1-k^{2}}$
D. $\frac{R}{k+1}$

Answer: C

## - Watch Video Solution

41. Speeds of two identical cars are $u$ and $4 u$ at at specific instant. The ratio of the
respective distances in which the two cars are stopped from that instant is
A. $1: 1$
B. 1: 4
C. 1:8
D. $1: 16$

Answer: D
( Watch Video Solution
42. If the pin hole in the container is very small compared to the area of the base of container and a block floats in the ideal liquid then, the speed of efflux is

A. less than $\sqrt{2 g h}$
B. greater than $\sqrt{2 g h}$
C. equal to $\sqrt{2 g h}$

## D. equal to $\sqrt{2 g H}$

## Answer: C

## D Watch Video Solution

43. When $p-n$ junction diode is forward biased then
A. the depletion region is reduced and
barrier height is increased
B. the depletion region is widened and
barrier height is reduced
C. both the depletion region and barrier
height are reduced
D. both the depletion region and barrier
height are increased

Answer: C

- Watch Video Solution

44. In Young's interference experiment, if the slit are of unequal width, then
A. fringes will not be formed
B. the positions of minimum intensity will
not be completely dark
C. bright fringe will not be formed at the
centre of the screen
D. distance between two consecutive
bright fringes will not be equal to the

# distance between two consecutive dark 

## fringes.

Answer: B

## D Watch Video Solution

45. The operating point of transistor amplifier should be in
A. middle of its active region
B. middle of its saturation region

## C. middle of its cut - off region

D. between the cut - off and active region

Answer: A
( Watch Video Solution

