©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 37

Physics

1. Mark out the correct statement with respect
to thermal radiations emitted by a black body
A. At a given temperature, , energy is
distributed non - uniformly among
different wavelengths
B. As temperature of body is increased ,
energy content of all wavelengths
decreases
C. The product of E_{λ} (spectral energy) with
D_{λ} (spectral width), for all equal $\Delta \lambda^{\prime}$ is
the same
D. The thermal radiation emitted by a hot body is a discrete spectra

Answer: A

D Watch Video Solution

2. Two particles of mass m and $2 m$ are connected by a string of length L and placed at rest over a smooth horizontal surface. The particles are then given velocities as indicated in the figure shown. The tension developed in
the string will be

A. $\frac{m v^{2}}{2 L}$
B. $\frac{3 m v^{2}}{4 L}$
C. $\frac{4 m v^{2}}{3 L}$
D. $\frac{8 m v^{2}}{3 L}$

Answer: D
3. A uniform circular ring of mass m and radius
R is placed freely on a horizontal smooth
surface as shown in figure. A particle of mass
m is connected to the circumference of the
ring with massless string . The particle is imparted velocity v_{0} perpendicular to length of string as shown. If T is tension in the string
just after the particle imparted velocity , then

Acceleration of point P at this instant, is

$$
\begin{aligned}
& \text { A. } \frac{4 T}{3 m} \\
& \text { B. } \frac{T}{m} \\
& \text { с. } \frac{2 T}{m}
\end{aligned}
$$

D. $\frac{3 T}{2 m}$

Answer: C

D Watch Video Solution

4. A particle of mass m describes a circle of
radius r. The centripetal acceleration of the
particle is $\frac{4}{r^{2}}$. What will be the momentum of the particle?

$$
\text { A. } \frac{4 m}{r}
$$

B. $\frac{2 m}{r}$
C. $\frac{4 m}{\sqrt{r}}$
D. $\frac{2 m}{\sqrt{r}}$

Answer: D

D Watch Video Solution

5. The north pole of a very strong electromagnet is brought near the meniscus of a liquid contained in a narrow. U - tube . The
liquid is seen to rise towards the north pole.

This indicates that the liquid is
A. ferromagnetic
B. paramagnetic
C. diamagnetic
D. non-magnetic

Answer: B
(Watch Video Solution
6. In the circuit shown if the internal
resistance of each cell is r, then the rate at which the chemical energy of ε_{1} is being consumed is

A. $\frac{\varepsilon^{2}}{5 r}$
B. $\frac{4 \varepsilon^{2}}{5 r}$
C. $\frac{2 \varepsilon^{2}}{5 r}$
D. $\frac{7 \varepsilon^{2}}{5 r}$

Answer: C

D Watch Video Solution

7. In the adjacent circuit diagram, each resister is of 16Ω. The equivalent resistance
between A and B is

A. 1Ω
B. 2Ω
C. 3Ω

D. 4Ω

Answer: C

D Watch Video Solution

8. A step - up transformer is used on 120 V line
to provide a potential difference of 2400 V . If
the number of turns in the primary is 75 , then
the number of turns in the secondary shall be
A. 25
B. 150
C. 1500
D. 500

Answer: C

- Watch Video Solution

9. An electron accelerated through 500 V , enters a transverse uniform magnetic field of magnitude 100 mT . The radius of the circular path described by the electron is nearly
A. $7.54 \times 10^{-1} \mathrm{~m}$
B. $7.54 \times 10^{-2} m$
C. $7.54 \times 10^{-3} m$
D. $7.54 \times 10^{-4} m$

Answer: D

D Watch Video Solution

10. The separation between the plates of a parallel plate capacitor, connected to a battery (zero resistance) of constant EMF is
increased with constant (very slow) speed by
external forces. During the process, w is the work done dy external forces. ΔU is the change in potential energy of the capacitor, w_{b} is work done by the battery and H is the heat loss in the circuit. Then
A. $w+w_{b}=\Delta U$
B. $H \neq 0$
C. $H=\Delta U$
D. $w=0$

- Watch Video Solution

11. Charges $+q$ and $-q$ are placed at points A and B respectively which are a distance $2 L$ apart, C is the midpoint between A and B.

The work done in moving a charge $+Q$ along the semicircle $C R D$ is

A. $\frac{q Q}{2 \pi \varepsilon_{0} L}$ and infinity
B. $\frac{q Q}{6 \pi \varepsilon_{0} L}$ and zero
C. zero, zero
D. $\frac{-q Q}{6 \pi \varepsilon_{0} L}$ and zero

Answer: D

D Watch Video Solution

12. A particle is projected from the mid-point of the line joining two fixed particles each of mass m. If the separation between the fixed particles is l, the minimum velocity of
projection of the particle so as to escape is equal to

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{G}{l}} \\
& \text { B. } \sqrt{\frac{G}{2 l}} \\
& \text { C. } \sqrt{\frac{2 G m}{l}} \\
& \text { D. } 2 \sqrt{\frac{2 G m}{l}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

13. The time period of a satellite of earth is 5
hours. If the separation between the centre of earth and the satellite is increased to 4 times
the previous value, the new time period will become-
A. 10 h
B. 18 h
C. 40 h
D. 20 h

Answer: C
14. Following graph shows the correct variation in intensity of heat radiations by black body and frequency at a fixed temperature
A.

B.

C.

Answer: C

- Watch Video Solution

15. $\Delta \mathrm{Q}=n C d T$ represents
A. Change in amount of heat contained in a
body as a result of temperature change
B. Amount of heat energy which transists
from one body to other due to
temperature difference
C. Both (Change in amount of heat
contained in a body as a result of
temperature change) and (Amount of
heat energy which transits from one
dody to other due to temperature
difference) are correct
D. None of these

Answer: B

- Watch Video Solution

16. An ideal gas A and a real gas B have their
volumes increases from $V \rightarrow 2 V$ under
isothermal condtitions. The increase in
internal energy
A. of A will be more than B
B. of A will be less than B
C. will be the same in both cases

D. will be zero in both cases

Answer: D

D Watch Video Solution

17. The force between two parallel current
carrying wires is independent of
A. their distance of separation
B. the length of the wires
C. the magnitude of currents

D. the radii of the wires

Answer: D

D Watch Video Solution

18. A current i ampere flows in a circular arc of
wire whose radius is R, which subtend an
angle $3 \pi / 2$ radian at its centre. The magnetic
induction B at the centre is

A. $\frac{\mu_{0} i}{R}$
B. $\frac{\mu_{0} i}{2 R}$
C. $\frac{2 \mu_{0} i}{R}$
D. $\frac{3 \mu_{0} i}{8 R}$

Answer: D

- Watch Video Solution

19. At time t, the position of a body moving along the x - axis is $x=t^{3}-6 t^{2}+9 t m$ The deceleration of the body at 1 s is
A. $6 m s^{-2}$
B. $4 m s^{-2}$
C. $8 m s^{-2}$
D. None

Answer: A

D Watch Video Solution

20. Two blocks of mass $1 \mathrm{~kg} \& 2 \mathrm{~kg}$ are hanged
from a light pulley and resting on a horizontal
surface. A time varying force $F=4 t N$ is acting
on pulley in the direction shown. Time after
which block will break off the surface will be -

A. 5
B. 10
C. 15
D. 20

Answer: A

- Watch Video Solution

21. In order to raise a mass of 100 kg , a man of mass 60 kg fastens a rope to it and passes the rope over a smooth pulley. He climbs the rope with acceleration $5 g / 4$ relative to the rope.

The tension in the rope is (take $g=10 \mathrm{~ms}^{-2}$)

A. 1432 N
B. 928 N
C. 1218 N
D. 624 N

Answer: C

D Watch Video Solution

22. A man is running on the ground .lt is
known that the coefficient of friction between
the man and the ground is μ. Then which of
the following statements is correct
A. Normal reaction between man and
ground is equal to weight of man
B. The direction of friction on man is in the
direction of normal reaction on the man
C. Direction of friction on man is opposite
to the direction of motion of man
D. Maximum acceleration of man can be
$2 \mu g$

Answer: A

23. The radioactive decay of uranium into
thorium is represented by the equation:
${ }_{.}^{238} U \rightarrow{ }_{92}^{234} T h+x$
What is x ?
A. an electron
B. a proton
C. an alpha particle
D. a neutron

Answer: C

- Watch Video Solution

24. A nucleus with mass number 220 initially at rest emits an α-particle. If the Q -value of the reaction is 5.5 MeV , calculate the kinetic energy of the α-particle.
(a) 4.4 MeV (b) 5.4 MeV (c) 5.6 MeV (d) 6.5 MeV
A. 4.4 MeV
B. 5.4 MeV
C. 5.6 MeV

D. 6.5 MeV

Answer: B

D Watch Video Solution

25. A pendulum with time period of $1 s$ is
losing energy due to damping. At time its energy is 45 J . If after completing 15 oscillations, its energy has become 15 J . Its damping constant (in s^{-1}) is :-

$$
\text { A. } \frac{1}{2}
$$

B. $\frac{1}{15} \ln 3$
C. $\frac{1}{30} \ln 3$
D. 2

Answer: C

D Watch Video Solution

26. A uniform spring whose unstretched length is I has a force constant k. the spring is
cut into two pieces of unstretched lengths l_{1} and l_{2}, where $l_{1}=n l_{2}$ and n is an integer.

What are the corresponding force constant k_{1} and k_{2} in terms of n and k ? what is the ratio k_{1} / k_{2}
A. force has to be kept same to find
k_{1} and k_{2}

$$
\begin{aligned}
& \text { B. } k_{1}=\frac{k(\eta+1)}{\eta} \text { and } k_{2}=k(\eta-1) \\
& \text { C. } k_{1}=\frac{k(\eta-1)}{\eta} \text { and } k_{2}=k(\eta+1) \\
& \text { D. } k_{1}=\frac{k(\eta+1)}{\eta} \text { and } k_{2}=k(\eta+1)
\end{aligned}
$$

Answer: D
27. When the voltage applied to an X-ray tube increased from $V_{1}=15.5 \mathrm{kV}$ to $V_{2}=31 \mathrm{kV}$
the wavelength interval between the K_{α} line and the cut-off wavelength of te continuous X ray spectrum increases by a factor of 1.3 . If te atomic number of the element of the target is
z. Then the value of $\frac{z}{13}$ will be: (take $h c=1240 \mathrm{eVnm}$ and $\left.R=1 \times \frac{10^{7}}{m}\right)$
A. Iron
B. Maganese

C. Nickel

D. Tin

Answer: A

D Watch Video Solution

28. What is de-Broglie wavelength of the electron accelerated through a potential difference of 100 V ?
A. $12.27 \AA$
B. $1.227 \AA$
C. $0.1227 \AA$
D. $0.001227 \AA$

Answer: B

D Watch Video Solution

29. A metal wire of length L, area of crosssection A and young's modulus Y is stretched by a variable force F such that F is always slightly greater than the elastic forces of
resistance in the wire. When the elongation of the wire is l
A. the work done by F is $\frac{Y A l^{2}}{2 L}$
B. the work done by F is $\frac{Y A l^{2}}{L}$
C. the elastic potential energy stored in the
wire is $\frac{Y a l^{2}}{2 L}$
D. no heat is produced during the
elongation

Answer: B
30. Two wires of the same material and length
but diameters in the ratio 1:2 are stretched
by the same force. The potential energy per unit volume for the two wires when stretched will be of the ratio.
A. 16: 1
B. 2:1
C. $4: 1$
D. 1:1

Answer: A

D Watch Video Solution

31. Two plane mirrors are inclined at an angle θ to one another.

A ray of light incident on the first mirror and parallel to the
second mirror is reflected from the second mirror parallel to
the first mirror. What is the value of θ ?
A. 90°
B. 60°
C. 120°
D. 30°

Answer: B

D Watch Video Solution

32. A biconvex lens of focal length 40 cm is placed in front of an object at a distance of 20 cm . Now a slab of refractive index $\frac{4}{3}$ is placed
somewhere in between the lens and the
object. The shift in the image formed after the introduction of slab equals (thickness of the slab is 2 mm)
A. 1 mm
B. 2 mm
C. 3 mm
D. 4 mm

Answer: B
33. A uniform solid sphere of mass m, radius R moving with velocity v_{0} is rolling without
slipping on a frictionless surface vertical wall.

Ratio of magnitude of angular momentum of
the sphere and after the collision about its
bottommost point is

A. $\frac{3}{5}$
B. $\frac{5}{3}$
C. $\frac{3}{7}$
D. $\frac{7}{3}$

Answer: D

D Watch Video Solution

34. Wheel A of radius $r_{A}=10 \mathrm{~cm}$ is coupled by a belt C to another wheel of radius $r_{B}=25 \mathrm{~cm}$ as in the figure. The wheels are
free to rotate and the belt does not slip. At
time $t=0$ wheel A increases it's angular speed from rest at a uniform rate $\pi / 2 \mathrm{rad} / \mathrm{sec}^{2}$ Find the time in which wheel B attains a speed of $100 r \pm\left[\right.$ Hint : $\left.v_{A}=v_{B}\right]$

A. 4 s
B. 8 s
C. 12 s
D. 16 s

Answer: D

D Watch Video Solution

35. If in a $\mathrm{p}-\mathrm{n}$ junction diode, a square input signal of 10 V is applied as shown

Then the output signal across R_{L} will be

36. In the following common emitter circuit , if
$\beta=100, V_{C E}=7 V, R(C)=2 k \Omega$ and $V_{B E}$ negligible , then I_{B} is

A. 0.01 mA
B. 0.04 mA
C. 0.02 mA

D. 0.03 mA

Answer: B

D Watch Video Solution

37. Two idential container joined by a small pipe initially contain the same gas at pressure p_{0} and absolute temperature T_{0}. One container is now maintained at the same temperature while the other is heated to $2 T_{0}$.

The common pressure of the gas
A. $\frac{2 P_{0}}{3}$
B. $\frac{4 P_{0}}{3}$
C. $\frac{P_{0}}{3}$
D. $2 P_{0}$

Answer: B

D Watch Video Solution
38. For an ideal gas, the specific heat capacity during an isentropic process is always
A. zero
B. infinite
C. positive
D. negative

Answer: A

D Watch Video Solution
39. In a system of units if force (F), acceleration
(A) and time (T) are taken as fundamental
units, then the dimensional formula of energy
is
A. $\left[F A T^{2}\right]$
B. $\left[F A^{2} T\right]$
C. $\left[F A^{2} T^{2}\right]$
D. [FAT]

Answer: A
(Watch Video Solution
40. If a planet was suddenly stopped in its orbit supposed to be circular, show that it would fall onto the sun in a time $\frac{\sqrt{2}}{8}$ times the period of the plant's revolution.
A. $\left(\frac{\sqrt{2}}{8}\right)$ times the period of the planet's revolution
B. $4 \sqrt{2}$ times the period of the planet's revolution
C. $3 \sqrt{2}$ times the period of the planet's revolution
D. 9 times the period of the planet's revolution

Answer: A

D Watch Video Solution

41. In the arrangement shown in Fig., slits S_{1}
and S_{4} are having a variable separation Z. Point
O on the screen is at the common perpendicular bisector of $S_{1} S_{2}$ and $S_{3} S_{4}$.

The minimum value of Z for which the intensity at O is zero is

$$
\begin{aligned}
& \text { A. } \frac{3 \lambda D}{2 d} \\
& \text { B. } \frac{\lambda D}{2 d} \\
& \text { C. } \frac{\lambda D}{3 d} \\
& \text { D. } \frac{\lambda D}{d}
\end{aligned}
$$

- Watch Video Solution

42. Light from sodium lamp is made to pass through two polaroids placed one after the other in the path of light. Taking the intensity of the incident light as 100%, the intensity of the out coming light that can be varied in the range
A. 0% to 100%
B. 0% to 50%
C. 0% to 25%

D. 0% to 75%

Answer: B

D Watch Video Solution

43. A string is clamped at both the ends and it
is vibrating in its $4^{\text {th }}$ harmonic. The equation
of the stationary wave is
$Y=0.3 \sin (0.157 x) \cos (200 \pi t)$. The length of
the string is: (All quantities are in SI units.)
B. 60 m
C. 40 m
D. 80 m

Answer: D

D Watch Video Solution

44. A point source emits sound equally in all directions in a non-absorbing medium. Two point P and Q are at distance of $2 m$ and $3 m$
respectively from the source. The ratio of the intensities of the wave at P and Q is :
A. $9: 4$
B. $2: 3$
C. $3: 2$
D. $4: 9$

Answer: A
(Watch Video Solution
45. A particle is projected vertically upwards with a speed of $16 m s^{-1}$. After some time, when it again passes through the point of projection, its speed is found to be $8 m s^{-1}$. It is known that the work done by air resistance is same during upward and downward motion. Then the maximum height attained by the particle is (take $g=10 m s^{-2}$)
A. 8 m
B. 4.8 m
C. 17.6 m
D. 12.8 m

Answer: A

- Watch Video Solution

