©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 38

Physics

1. Let A_{n} be the area enclosed by the $n^{\text {th }}$ orbit
in a hydrogen atom. The graph of $\ln \left(A_{n} / A_{t}\right)$
against $\ln (n)$
A. will pass through the origin
B. will be a straight line of slope 3
C. will be a straight line of slope 3
D. will be a circle

Answer: A

D Watch Video Solution

2. A rigid rod leans against a vertical wall (yaxis) as shwon in figure. The other end of the rod is ion the horizontal floor. Point A is
pushed downwards with constant velocity.

Path of the centre of the rod is

A. a straight line passing through origin
B.a straight line not passing through
C. a circle of radius $l / 2$ and centre at origin
D. a circle of radius $l / 2$ and centre not at origin

Answer: C

D Watch Video Solution

3. A 2000 kg rocket in free space expels 0.5 kg of gas per second at exhaust velocity
$400 \mathrm{~m} \mathrm{~s}^{-1}$ for 5 s . The increase in the speed of the rocket in this time is

A. $2000 m s^{-1}$
B. $200 \mathrm{~ms}^{-1}$
C. $0.5 m s^{-1}$
D. zero

Answer: C
(Watch Video Solution
4. Which of the following statements is correct ?
A. If the centre of mass is at rest, then the net work done dy all the forces acting on
the system is zero
B. If the velocity of the centre of mass
remains zero, then the net external force
acting on the system must zero
C. If the speed of centre of mass is
changing, then there must be some
work done by the internal forces on the
system
D. If centre of mass of three - particle
system is at rest and it is known that two of the particles are moving in
different non-collinear lines, then third
particle may be moving

- Watch Video Solution

5. If a diamagnetic solution is poured into a U tube and one aem of this U-tube placed between the poles of a strong magnet with the meniscus in a line with the field, then the level of the solution will
A. rise
B. fall
C. oscillate slowly

D. remain as such

Answer: B

D Watch Video Solution

6. In the given circuit, the current following in
the 1Ω resistance will be
A. $3 A$
B. $4 A$
C. $5 A$
D. $6 A$

Answer: D

D Watch Video Solution

7. Thirteen resistances each of resistance R
ohm are connected in the circuit as shown in
the figure below. The effective resistance
between A and B is

A. $2 R \Omega$
B. $\frac{4 R}{3} \Omega$
c. $\frac{2 R}{3} \Omega$
D. $R \Omega$

Answer: C

D Watch Video Solution

8. If the coils of a transfomer are made up of
thick wire, then
A. eddy current losses will be more
B. magnetic flux leakage is reduced
C. Joule heating loss is increased

D. Joule heating loss is reduced

Answer: D

D Watch Video Solution

9. A current - carrying loop is dropped from
the posy shown. The loop starts entering into
a region of uniform magnetic field, directed into the plane . (Neglect effects of self induction and G is the acceleration due to gravity .) Which of the following statements is

A. The loop will fall with an acceleration
more than g
B. The loop will fall with an acceleration
less than g
C. The magnitude of acceleration of loop
will increase as it moves down
D. The magnitude of acceleration of loop
will remain as it moves down

Answer: B

D Watch Video Solution
10. Four metal plates numbered $1,2,3$ and 4 are arranged, as shown in figure. The area of each plate is A and the separation between them is d. The capacitance of the arrangement is
A. $\frac{\varepsilon_{0} A}{d}$
B. $\frac{2 \varepsilon_{0} A}{d}$
C. $\frac{3 \varepsilon_{0} A}{d}$
D. $\frac{4 \varepsilon_{0} A}{d}$

D Watch Video Solution

11. The electric field of an electric dipole at a point on its axis, at a distance d from the center of the dipole, varies as

> A. $\frac{1}{d}$
> B. $\frac{1}{d^{2}}$
> C. $\frac{1}{d^{3}}$
> D. $\frac{1}{d^{\frac{3}{2}}}$

Answer: C

D Watch Video Solution

12. A projectile is fired from the surface of earth of radius R with a velocity ηv_{e} where v_{e}
is the escape velocity and $\eta<1$. Neglecting air resistance, the orbital velocity of projectile is -

$$
\begin{aligned}
& \text { A. } v e \sqrt{1-\eta 2} \\
& \text { B. } v_{e} \sqrt{\frac{\eta^{2}}{5}}
\end{aligned}
$$

> C. $\frac{2}{5} v_{e} \sqrt{\eta}$
> D. $\frac{2 \eta}{5} v_{e}$

Answer: A

D Watch Video Solution

13. A geostationary satellite is orbiting the earth at a height of $6 R$ above the surface of the earth, where R is the radius of the earth.

The time period of another satellite at a
height of 2.5 R from the surface of the earth is
...... hours.
A. $6 \sqrt{2}$ hour
B. 6 hour
C. $5 \sqrt{2}$ hour
D. 10 hour

Answer: A
(Watch Video Solution
14. The rays of the sun are focused on a piece of ice through a lens of diameter 5 cm , as a result of which 10 g ice melts in 10 minutes.

The amount of heat received from the sun per unit area per minute is
A. $4 \mathrm{cal} \mathrm{cm}{ }^{-2} \min .^{-1}$
B. $40 \mathrm{cal} \mathrm{cm}^{-2} \min .^{-1}$
C. $4 \mathrm{Jcm}^{-2} \mathrm{~min}^{-1}$
D. $400 \mathrm{cal} \mathrm{cm}{ }^{-2} \min .^{-1}$

Answer: A

- Watch Video Solution

15. An ideal gas (1 mol ,monatomic) is in the initial state P (see diagram) on an isothermal curve A at a temperature T_{0}. It is brought under a constant volume ($2 V_{0}$) process to Q which lies on an adiabatic curve B intersecting the isothermal curve A at $\left(P_{0}, V_{0}, T_{0}\right)$. The change in the internal energy of the gas (in terms of T_{0}) during the process is
A. $2.3 T_{0}$
B. $-4.6 T_{0}$
C. $-2.3 T_{0}$
D. $4.6 T_{0}$

Answer: B

- Watch Video Solution

16. n moles of diatomic gas in a cylinder is at a temperature T . Heat is supplied to the cylinder such that the temperature remains constant but n moles of the diatomic gas get converted into monatomic gas. The change in the total kinetic energy of the gas is
A. 0

> B. $\frac{5}{2} n R T$ C. $\frac{3}{2} n R T$ D. $\frac{1}{2} n R T$

Answer: D

- Watch Video Solution

17. An α - particle with a specific charge of
$2.5 \times 10^{7} \mathrm{Ckg}^{-1}$ moves with a speed of
$2 \times 10^{5} \mathrm{~ms}^{-1}$ in a perpendicular magnetic
field of $0.05 T$. Then , the radius of the circular path described by it is
A. 8 cm
B. 4 cm
C. 16 cm
D. 2 cm

Answer: C
(Watch Video Solution
18. The figure shows a circular loop of radius a
with two log parallel wires (numbered 1 and 2)
all in the plane of the paper of The loop . and
the wires are carrying the same current I. The
current in the loop is in the counterclockwise direction if seen from above

Consider $d \gg a$, and the loop is rotated about its diameter parallel to the wires by 90°
from the position shown in the figure. If the currents in the wires are in the opposite directions, the torque on the loop at its new position will be (assume that the net field due to the wires is constant over the loop).

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} I^{2} a^{2}}{2 d} \\
& \text { B. } \frac{\mu_{0} I^{2} a^{2}}{d} \\
& \text { C. } \frac{\sqrt{3} \mu_{0} I^{2} a^{2}}{d} \\
& \text { D. } \frac{\sqrt{3} \mu_{0} I^{2} d^{2}}{2 d}
\end{aligned}
$$

Answer: B

D Watch Video Solution

19. At time t, the position of a body moving
along the x - axis is $x=\left(t^{3}-6 t^{2}+9 t\right) m$
Then, it momentarily comes to rest at
A. 1 s
B. 3 s
C. 5 s
D. both 1 s and 3 s

Answer: D

- Watch Video Solution

20. Wein's constant is 2892×10^{-6} MKS unit
and the value of λ_{m} from moon is 14.46
microns. What is the surface temperature of

moon

A. 100 K
B. 300 K
C. 400 K

D. 200 K

Answer: D

D Watch Video Solution

21. Five persons A, B, C, D and E are pulling a cart of mass 100 kg on a smooth surface and
the cart is moving with an acceleration of $3 m s^{-2}$ in the east direction. If another person

F comes and ans starts pulling the cart with a
force of 100 N due west, then the acceleration of the cart will be
A. $2.5 m s^{-2}$
B. $1 m s^{-2}$
C. $2 m s^{-2}$
D. $4 m s^{-2}$

Answer: C
(Watch Video Solution
22. An elevator weighing 6000 kg is pulled
upward by a cable with an acceleration of
$5 m s^{-2}$. Taking g to be $10 m s^{-2}$, then the tension in the cable is
A. 6000 N
B. 9000 N
C. 60000 N
D. 90000 N

Answer: D
23. A radioactive material decays by simulataneous emission of two particle from the with respective half - lives 1620 and 810 year. The time, in year, after which one fourth of the material remains is
A. 4860 yr
B. 3240 yr
C. 2340 yr
D. 1080 yr

Answer: D

D Watch Video Solution

24. A neutron is absorbed by a $\cdot{ }_{3}^{6} \mathrm{Li}$ nucleus
with the subsequent emission of an alpha particle.
(i) Write the corresponding nuclear reaction.
(ii) Calculate the energy released, in MeV , in this reaction.
[Given: mass $.{ }_{3}^{6} L i=6.015126 u$, mass
(neutron) $=1.0086654 u$ mass (alpha particle)

$=0.0026044 u$
 $=3.010000 u$. Take $\left.i u=931 M e V / c^{2}\right]$

A. 10.92 MeV
B. 10.415 MeV
C. 9.791 MeV
D. 8.73 MeV

Answer: B

D Watch Video Solution

25. A pendulum of length $l=1 m$ is released
from $\theta_{0}=60^{\circ}$. The rate of change of speed of the bob at $\theta=30^{\circ}$ is.

A. $10 m s^{-2}$
B. $7.5 m s^{-2}$
C. $5 m s^{-2}$
D. $5 \sqrt{3} m s^{-2}$

Answer: C

D Watch Video Solution

26. Two identical balls A and B each of mass
0.1 kg are attached to two identical mass less
is springs. The spring-mass system is
constrained to move inside a right smooth
pipe bent in the form of a circle as shown in
figure . The pipe is fixed in a horizontal plane.
The center of the balls can move in a circle of
radius $0.06 m$. Each spring has a natural length
of $0.06 \pi m$ and force constant $0.1 \mathrm{~N} / \mathrm{m}$.
Initially, both the balls are displaced by an
angle $\theta=\pi / 6$ radians with respect to
diameter PQ of the circle and released from
rest.
a. Calculate the frequency of oscillation of the ball B.
b. What is the total energy of the system ?
c. Find the speed of the ball A when A and B are at the two ends of the diameter PQ .

A. $\pi H z$
B. $\frac{1}{\pi} H z$
C. $2 \pi H z$
D. $\frac{1}{2 \pi} H z$

Answer: B

- Watch Video Solution

27. A photo - cell is being operated in saturation mode . Electromagnetic radiations of wavelength $\lambda \mathrm{m}$ fall upon the photo - cell .

The corresponding spectral sensitivity of photocell is $J A W^{-1}$. The number of photo electrons produced by each incident photon, is
A. $\frac{h c}{2 e \lambda J}$
B. $\frac{h c}{e \lambda}$
C. $\frac{h c}{e \lambda}$
D. $\frac{2 h c}{e \lambda J}$

Answer: B

- Watch Video Solution

28. A load of mass m falls from a height h on
to the scale pan hung from a spring, as shown
in the figure. If the spring constant is k, mass
of the not bounce, relative to the pan, then
the amplitude of vibration is

A. $\frac{m g}{k}$
B. $\frac{m g}{k} \sqrt{\left(1+\frac{2 h k}{m g}\right)}$
C. $\frac{m g}{k}+\frac{m g}{k} \sqrt{\left(1+\frac{2 h k}{m g}\right)}$
D. $\frac{m g}{k} \sqrt{\frac{1+2 h k}{m g}-\frac{m g}{k}}$

Answer: B

- Watch Video Solution

29. An object is floating in a liquid, kept in a container. The container is placed in a lift .

Choose the correct option .
A. Buoyant force increases as the lift accelerates up
B. Buoyant force decreases as the lift accelerates up
C. Buoyant force remains constant as the
lift accelerates
D. The fraction of solid submerged into
liquid decreases
30. Surface tension of water is $0.072 \mathrm{Nm}^{-1}$.

The excess pressure inside a water drop of diameter 1.2 mm is :-
A. $240 \mathrm{Nm}^{-2}$
B. $120 \mathrm{Nm}^{-2}$
C. $0.06 \mathrm{Nm}^{-2}$
D. $72 \mathrm{Nm}^{-2}$
31. The graph between object distance u and image distance v from a convex lens is given
.The correct option option, from the following ,is
A. $f=5 \pm 0.1$
B. $f=5 \pm 0.05$
C. $f=0.5 \pm 0.1$

$$
\text { D. } f=0.5 \pm 0.05
$$

Answer: B

D Watch Video Solution

32. A convex lens is used to obtain a magnified image of an object on a screen. The object is at a distance 10 m from the lens. If the magnification is 19. the focal length of the lens is
A. 9.5 cm
B. 0.95 cm
C. 9.5 m
D. 0.95 m

Answer: C

D Watch Video Solution

33. A small coin is placed at a distance r from
the centre of a gramophone record.The rotational speed of the record is gradually increased. If the coefficient of friction between
the coin and the record is μ, the minimum angular frequency of the record for which the coin will fly off is given by :

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 \mu g}{r}} \\
& \text { B. } \sqrt{\frac{\mu g}{2 r}} \\
& \text { C. } \sqrt{\frac{\mu g}{r}} \\
& \text { D. } 2 \sqrt{\frac{\mu g}{r}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

34. A thin uniform rod of length l and mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is ω. Its centre of mass rises to a maximum height of -

$$
\begin{aligned}
& \text { A. } \frac{1}{3} \frac{l^{2} \omega^{2}}{g} \\
& \text { B. } \frac{1}{6} \frac{l \omega}{g} \\
& \text { C. } \frac{1}{2} \frac{l^{2} \omega^{2}}{g} \\
& \text { D. } \frac{1}{6} \frac{l^{2} \omega^{2}}{g}
\end{aligned}
$$

Answer: D

35. If a full wave rectifier circuit is operating
from 50 Hz mains, the fundamental frequency
in the ripple will be
A. 70.7 Hz
B. 100 Hz
C. 25 Hz
D. 59 Hz
36. A common emitted amplifier circuit, built using an npn transistor, is shown in the figure.

Its dc current gain is $250, R_{C}=1 K \omega$ and $V_{C C}=10 \mathrm{~V}$. What is the minimum base current for $V_{C E}$ to reach saturation?

A. $10 \mu \mathrm{~A}$
B. $40 \mu \mathrm{~A}$
C. $7 \mu A$
D. $100 \mu \mathrm{~A}$

Answer: B

D Watch Video Solution

37. At constant pressure, the ratio of increases
in volume of an ideal gas per degree rise in
kelvin temperature to its volume is
A. T^{2}
B. $\frac{1}{T}$
C. T^{3}
D. T

Answer: B

D Watch Video Solution

38. An experiment is performed to measure the specific heat of copper. A lump of copper is heated in an oven, then dropped into a
beaker of water. To calculate the specific heat
of copper, the experiment must know or measure the value of all quantities below except the
A. heat capacity of water and breaker
B. original temperature of the copper and
the water
C. final (equilibrium) temperature of the
copper and the water
D. time taken to achieve equilibrium after
the copper is dropped into the water

Answer: D

D Watch Video Solution

39. The dimensional formula of $\frac{1}{\mu_{0} \in_{0}}$ is
A. $\left[M^{0} L^{2} T^{-2}\right]$
B. $\left[M^{0} L^{1} T^{-1}\right]$
C. $\left[M^{0} L^{-2} T^{-2}\right]$
D. $\left[M^{0} L^{1} T^{-2}\right]$
40. The relative error in the determination of the surface area of a sphere is α. Then the relative error in the determination of its volume is :
A. $\frac{3}{2} \alpha$
B. $\frac{2}{3} \alpha$
C. α
D. $\frac{5}{2} \alpha$

Answer: A

- Watch Video Solution

41. The central fringe shifts to the position of
fifth bright fringe, if a thin film of refractive index 1.5 is introduced in the path of light of wavelength $5000 \AA$. The thickness of the glass
plate is
A. $1 \mu m$
B. $5 \mu m$
C. $3 \mu m$
D. $4 \mu m$

Answer: B

D Watch Video Solution

42. A rigid circular loop of radius r \& mass m
lies in the xy plane on a flat table and has a current I flowing in it At this particular place
the earth's magnetic filed is $B=B_{x} \hat{i}+B_{y} \hat{j}$
How large must I be before one edge of the
loop will lift from table
Repeat if,$\vec{B}=\overrightarrow{B_{x}} \hat{i}+\overrightarrow{B_{z}} \hat{k}$.

$$
\begin{aligned}
& \text { A. } \frac{m g}{\pi \sqrt{B_{x}^{2}+B_{2}^{2}}} \\
& \text { B. } \frac{m g}{\pi r B_{x}} \\
& \text { C. } \frac{m g}{\pi r B_{z}} \\
& \text { D. } \frac{m g}{\pi \sqrt{B_{x} B_{z}}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

43. The charge, which will flow through a 200
Ω galvanometer connected to a 400Ω circular coil of 1000 turns wound on a wooden stick 20 mm in diameter, if a magnetic field $B=0.012 T$ parallel to the axis of the stick decreased suddenly to zero is
A. $6.3 \mu C$
B. $63 \mu C$
C. $0.63 \mu C$
D. $630 \mu C$

Answer: A

D Watch Video Solution

44. The ratio of the intensities two waves is 1 :

9 The ratio of their amplitudes is
A. 3:1
B. 1:3
C. 1:9
D. $9: 1$

Answer: B

D Watch Video Solution

45. A body of mass 1 kg is rotated in a horizontal circle of radius 1 m and moves with velocity $2 m s^{-1}$ The work done in 10 revolutions is
A. 40 J
B. 20 J
C. $4 \times 2 \pi(10) J$

Answer: D

- Watch Video Solution

