© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 40

Physics

1. In a hydrogen like atom electron make
transition from an energy level with quantum
number n to another with quantum number
$(n-1)$ if $n \gg 1$, the frequency of radiation emitted is proportional to :

$$
\begin{aligned}
& \text { A. } \frac{1}{n^{3}} \\
& \text { B. } \frac{1}{n} \\
& \text { C. } \frac{1}{n^{2}} \\
& \text { D. } \frac{1}{n^{4}}
\end{aligned}
$$

Answer: A
(Watch Video Solution
2. In the figure given, A and B are two particles
having same magnitude of angular velocity in
opposite sense, at $\mathrm{t}=0$, then
$\vec{V}_{A}-\vec{V}_{B}$ at $t=\frac{\pi}{2 \omega} \sec$ is

A. $-\omega R_{1} \hat{i}+\omega R_{2} \hat{i}$
B. $\omega R_{1} \hat{i}-\omega R_{2} \hat{j}$
C. $\omega R_{1} \hat{j}-\omega R_{2} \hat{i}$

D. $\omega R_{1} \hat{j}+\omega R_{2} \hat{j}$

Answer: A

D Watch Video Solution

3. A particle of mass m_{1} makes a head - on elastic collision with another particle of mass m_{2} at rest. m_{1} rebounds straight back with $\frac{4}{9}$ of its initial kinetic energy. Then $\frac{m_{1}}{m_{2}}$ is :
A. $\frac{2}{3}$
B. $\frac{1}{5}$
C. $\frac{3}{2}$
D. $\frac{2}{5}$

Answer: B

D Watch Video Solution

4. An object, initially at rest, explodes into
three fragments of equal mass. The momenta of two parts are $2 p \hat{i}$ and $p \hat{j}$ where p is a
positive number. The momentum of the third part is
A. Will be of the magnitude $3 p$ inclined at

$$
\tan ^{-1}\left(\frac{1}{2}\right) \text { with } x-\text { axis }
$$

B. Will be of the magnitude $\sqrt{5} p$ inclined at
$\tan ^{-1}(2)$ with x - axis
C. Will be of the magnitude $3 p$ inclined at
$\pi-\tan ^{-1}\left(\frac{1}{2}\right)$ with x - axis
D. Will be of the magnitude $\sqrt{5} p$ inclined at
$\pi+\tan ^{-1}\left(\frac{1}{2}\right)$ with x - axis

Answer: D

D Watch Video Solution

5. The coercivity of a small bar magnet is
$4 \times 10^{3} \mathrm{Am}^{-1}$. It is inserted inside a solenoid
of 500 turns and length 1 m to demagnetize it.
The amount of current to be passed through
the solenoid will be
A. 2.5 A
B. $5 A$
C. $8 A$
D. 10 A

Answer: C

- Watch Video Solution

6. To get maximum current through a resistance of 2.5Ω, one can use m rows of cells, each row having n cells. The internal resistance of each cell is 0.5Ω what are the
values of n and m, if the total number of cells is 45 .

$$
\begin{aligned}
& \text { А. } m=3, n=15 \\
& \text { В. } m=5, n=9 \\
& \text { С. } m=9, n=5 \\
& \text { D. } m=15, n=3
\end{aligned}
$$

Answer: A

- Watch Video Solution

7. In the below circuit, $A B$ is a wire of length

100 cm with 5Ω resistance. If there is no deflection in the galvanometer, the current flowing in the wire $A B$ is

A. $0.1 A$
B. $0.5 A$
C. 1.0 A
D. $1.4 A$

Answer: A

D Watch Video Solution

8. A power transmission line feeds input power at 2300 V a step down transformer with its primary windings having 4000 turns. The output power is delivered at 230 V by the transformer. If the current in the primary of
the transformer is 5 A and its efficiency is 90%
, the output current would be :
A. 45 A
B. 50 A
C. 20 A
D. 25 A

Answer: A
(Watch Video Solution
9. A $60 \mathrm{~W}, 120 \mathrm{~V}$ bulb is connected to a 240 V ,

60 Hz supply with an inductance in series. Find
the value of inductance so that bulb gets correct voltage.

$$
\begin{aligned}
& \text { A. } \frac{2.3}{\pi} H \\
& \text { B. } 2 \sqrt{3} H \\
& \text { C. } \pi H \\
& \text { D. } \frac{2 \sqrt{3}}{\pi} H
\end{aligned}
$$

Answer: D

10. The two plates of a parallel plate capacitor are 4 mm apart. A slab of dielectric constant 3 and thickness 3 mm is introduced between the plates is so adjusted that the capacitance of the capacitor becomes $\frac{2}{3} r d$ of its original value. What is the new distance between the plates?
A. 9 mm
B. 21 mm
C. 5 mm
D. 8 mm

Answer: D

D Watch Video Solution

11. An infinitely long wire is kept along z-axis
from $z=\infty$ to $z=\infty$, having uniform linear cahrges density $\frac{10}{9} n C / m$. The electric field
at point $(6 \mathrm{~cm}, 8 \mathrm{~cm}, 10 \mathrm{~cm})$ will be

Z $\xrightarrow{ }$

A. $(160 \hat{i}+120 \hat{j}+200 \hat{k}) N C^{-1}$
B. $(200 \hat{k}) N C^{-1}$
c. $(160 \hat{i}+120 \hat{j}) N C^{-1}$

$$
\text { D. }(120 \hat{I}+160 \hat{j}) N C^{-1}
$$

Answer: D

D Watch Video Solution

12. A mass of $6 \times 10^{24} \mathrm{~kg}$ is to be compressed
in a sphere in such a way that the escape velocity from its surface is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find the radius of the sphere.
A. 9 km
B. 9 m
C. 9 cm
D. 9 mm

Answer: D

D Watch Video Solution

13. A rocket is fired with a speed $u=3 \sqrt{g R}$
from the earth surface. What will be its speed
at interstellar space?
A. zero
B. $\sqrt{2 g R}$
C. $\sqrt{7 g R}$
D. $\sqrt{3 g R}$

Answer: C

D Watch Video Solution

14. The ratio of energies of emitted radiation by a black body at 600 K and 900 K , when the surrounding temperature is 300 K , is

5

A. $\frac{5}{16}$
B. $\frac{7}{16}$
C. $\frac{3}{16}$
D. $\frac{9}{16}$

Answer: C

- Watch Video Solution

15. A perfect gas goes from state A to another state B by absorbing $8 \times 10^{5} \mathrm{~J}$ of heat and doing $6.5 \times 10^{5} \mathrm{~J}$ of external work. It is now
transferred between the same two states in another process in which it absorbs $10^{5} \mathrm{~J}$ of heat. Then in the second process,
A. Work done on gas is $10^{5} \mathrm{~J}$
B. Work done on gas is $0.5 \times 10^{5} \mathrm{~J}$
C. Work done by gas is $10^{5} \mathrm{~J}$
D. Work done by gas is $0.5 \times 10^{5} \mathrm{~J}$

Answer: B

D Watch Video Solution
16. An amount Q of heat is added to a monoatomic ideal gas in a process in which
the gas performs work $\frac{Q}{2}$ on its surrounding.
Find the molar heat capacity for the process.
A. 2 R
B. 1.5 R
C. 3 R
D. 2.5 R

Answer: C
17. A very long metallic hollow pipe of length I and radius $r(\ll l)$ is carrying charge Q , uniformly distributed upon it . The pipe is rotated about its axis with constant angular speed ω. The energy stored in the pipe of length $\frac{l}{100}$ is
A. $\frac{\mu_{0} Q^{2} \omega^{2} r^{2}}{100 \pi l}$
B. $\frac{\mu_{0} Q^{2} \omega^{2} r^{2}}{200 \pi l}$
C. $\frac{\mu_{0} Q^{2} \omega^{2} r^{2}}{800 \pi l}$
D. $\frac{\mu_{0} Q^{2} \omega^{2} r^{2}}{400 \pi l}$

Answer: C

D Watch Video Solution

18. A current of $1 A$ is flowing through a straight conductor of length 16 cm . The magnetic induction (in tesla) at a point 10 cm from the either end the wire is :

$$
\begin{aligned}
& \text { A. } \frac{8}{3} \times 10^{-6} \\
& \text { B. } \frac{1}{6 \sqrt{2}} \times 10^{-5} \\
& \text { C. } \frac{1}{6 \sqrt{3}} \times 10^{-5}
\end{aligned}
$$

D. $\frac{\sqrt{3}}{6} \times 10^{-6}$

Answer: A

- Watch Video Solution

19. A and B participate in a race with acceleration a_{1} and a_{2}, respectively . A reaches t times earlier than B at finish line and their velocities at finish line are v_{1} and v_{2}, respectively. If difference between their velocities is v, then find the value of v
A. $\frac{a_{1}+a_{2}}{2} t$
B. $\sqrt{a_{1} a_{2}} t$
C. $\frac{a_{1} a_{2}}{a_{1}+a_{2}} t$
D. $\frac{2 a_{1} a_{2}}{a_{1}+a_{2}} t$

Answer: B

D Watch Video Solution

20. A particle is projected with velocity $20 \mathrm{~ms}^{-1}$ at angle 60° with horizontal. The radius of curvature of trajectory, at the
instant when velocity of projectile become perpendicular to velocity of projection is $\left(g=10 m s^{-1}\right)$
A. $60 \sqrt{3} m$
B. $\frac{80}{\sqrt{3}} m$
C. $40 \sqrt{3} m$
D. $\frac{80}{3 \sqrt{3}} m$

Answer: D

D Watch Video Solution
21. A uniform L shaped rod each of side a is
held ,as shown in the figure. The angle θ such
that rod remains stable. Will be.

A. $\tan ^{-1}\left(\frac{1}{2}\right)$
B. $\tan ^{-1}\left(\frac{1}{3}\right)$
C. $\tan ^{-1} 2$
D. $\tan ^{-1} 3$

Answer: B

D Watch Video Solution

22. A rope of length 10 m and linear density
$0.5 \mathrm{~kg} / \mathrm{m}$ is lying length wise on a smooth
horizontal floor It is pulled by a force of 25 N .

The tension in the rope at a point $6 m$ away from the point of application is .
A. 20 N
B. 15 N
C. 10 N
D. 5 N

Answer: C
(Watch Video Solution
23. The half-life period of a radioactive element x is same as the mean life time of another
radioactive element y. Initially, both of them have the same number of atoms. Then,
(a) x and y have the same decay rate initially
(b) x and y decay at the same rate always
(c) y will decay at a faster rate than x
(d) x will decay at a faster rate than y
A. x and y have the same decay rate initially
B. x and y decay at the same rate always
C. y will decay at a faster rate than x

D. x will decay at a faster rate than y

Answer: C

D Watch Video Solution

24. What is the binding energy per nucleon of
. ${ }_{6} C^{12}$ nucleus?
Given , mass of $C^{12}\left(m_{c}\right)_{m}=12.000 \mathrm{u}$
Mass of proton $m_{p}=1.0078 \mathrm{u}$
Mass of neutron $m_{n}=1.0087 \mathrm{u}$
and $1 \mathrm{amu}=931.4 \mathrm{MeV}$
A. 5.26 MeV

B. 10.11 MeV

C. 15.65 MeV
D. 7.68 MeV

Answer: D

D Watch Video Solution

25. The bob of a simple pendulum executes
simple harmonic motion in water with a
period t, while the period of oscillation of the
bob is t_{0} in air. Neglecting frictional force of water and given that the density of the bob is $(4 / 3) \times 1000 \mathrm{~kg} / \mathrm{m}^{3}$.

What relationship between t and t_{0} is true.
A. $t=t_{0}$
B. $t=t_{0} / 2$
C. $t=2 t_{0}$
D. $t=4 t_{0}$

Answer: C

26. A block of mass m is connected two springs
of spring constant $2 k$ annd k, respectively, as
shown in the vertical plane. At equilibrium , both springs are compressed by same length.

If suddenly lower spring is cut, then

A. 2 g downward
B. g downward
C. g upward
D. None of these

Answer: A

D Watch Video Solution
27. Which one of the following statement is
$W R O N G$ in the context of X - rays generated
from X- rays tube ?
A. Wavelength of characteristic X - rays
decreases when the atomic number of
the target increases
B. Cut - off wavelength of the continuous X

- rays depends on the atomic number of
the target
C. Intensity on the electrical power given to
the X - ray tube
D. Cut - off wavelength of the continuous X
- rays depends on the energy of the

electrons in X - ray tube

Answer: B

D Watch Video Solution

28. To decrease the cut-off wavelength of
continuous $X-r a y$ by 25%, the potential
difference across the $X-r a y$ tube
A. must be increased by $\frac{100}{3} \%$
B. must be decreased by 20%

C. must be increased by 25\%

D. must be decreased by 25 \%

Answer: A

- Watch Video Solution

29. The excess pressure inside a spherical drop of water is four times that of another drop.

Then, their respective mass ratio is
A. $1: 16$
B. $8: 1$
C. 1:4
D. 1:64

Answer: D

D Watch Video Solution

30. Equal volumes of two immiscible liquids of density 2ρ and 4ρ, respectively, are filled in
the vessel as shown in the figure. Two small
holes are punched at depth $\frac{h}{2}$ and $2 h$,
respectively, from the surface of the lighter liquid. If v_{1} and v_{2} are the velocities of efflux at these holes, then the ratio of $\frac{v_{1}}{v_{2}}$ is

A. $1 / 3$
B. $1 / \sqrt{3}$
C. $1 / 2$
D. $1 / \sqrt{2}$

Answer: B

- Watch Video Solution

31. A thin walled glass sphere of radius 2.5 cm
is filled with water. An object (O) is placed at
7.5 cm from the effect of glass wall, at what distance the image (I) of the object, measured from the centre of sphere is formed ?
(refractive index of water $=1.333$)

A. 20 cm
B. 15 cm
C. 10 cm
D. 7.5 cm

Answer: C
32. An object O is placed at a height $\mathrm{h}=12 \mathrm{~cm}$ above water $\left(\mu=\frac{4}{3}\right)$ surface in a beaker.

The lower surface of the beaker is polished, as
shown in the figure . The location of final

A. 10 cm below water surface
B. 10 cm above water surface
C. 30 cm below water surface

D. 30 cm above water surface

Answer: C

- Watch Video Solution

33. A uniform disc is rotating at a constant speed in a vertical plane about a fixed horizontal axis passing through the centre of the disc. A piece of the disc at the instant when it is at a horizontal level with the centre of the disc and moving upward. Then about
the fixed axis, the angular speed of the remaining disc is
A. remains unchanged
B. decreases
C. increase
D. initially increases and later decreases

Answer: A

D Watch Video Solution

34. A solid sphere has linear velocity
$v_{0}=4 \mathrm{~m} / \mathrm{s}$ and angular velocity $\omega_{0}=9 \mathrm{rad} / \mathrm{s}$
as shown. Ground on which it is moving , is smooth . It collides elastically with a rough
wall of coefficient with a rough wall of coefficient of friction μ. Radius of the sphere is 1 m and mass is 2 kg .

If the sphere after colliding with the wall rolls
without slipping in opposite direction, the coefficient of friction μ is

> A. $\frac{1}{2}$
> B. $\frac{2}{3}$
> C. $\frac{1}{3}$
> D. $\frac{1}{4}$

Answer: D

- Watch Video Solution

35. The diode used in the circuit shown in the
figure has a constant voltage drop of 0.5 V at all currents and a maximum power rating fo 100 milliwatts. What should be the value of the resistor R, connected in series with the diode for obtaining maximum current?

A. 1.5Ω
B. 5Ω
C. 6.675Ω
D. 200Ω

Answer: B

D Watch Video Solution

36. A solenoid of radius 4 cm and 1000 turns,
carries a current of 8 A . If it is equivalent to a magnet of same size and magnetisation \vec{M}
(Magnetic moment / Volume) of $20000 \mathrm{Am}^{-1}$,
then the length of the solenoid is
A. $10 \pi \mathrm{~cm}$
B. $20 \pi \mathrm{~cm}$
C. $30 \pi \mathrm{~cm}$
D. $40 \pi \mathrm{~cm}$

Answer: D
(Watch Video Solution
37. Steam at $100^{\circ} \mathrm{C}$ is passed into 1.1 kg of water contained in a calorimeter of water equivalent 0.02 kg at $15^{\circ} \mathrm{C}$ till the temperature of the calorimeter and its contents rises to $80^{\circ} \mathrm{C}$. The mass of the steam condensed in kilogram is
A. 1.13
B. 0.065
C. 0.26
D. 0.135

Answer: A

D Watch Video Solution

38. A 2 kg copper block is heated to $500^{\circ} \mathrm{C}$ and then it is placed on a large block of ice at
$0^{\circ} C$. If the specific heat capacity of copper is
$400 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} C$ and latent heat of fusion of water is $3.5 \times 10^{5} \mathrm{~J} / \mathrm{kg}$. The amount of ice that can melt is :
A. $\frac{7}{8} \mathrm{~kg}$
B. $\frac{7}{5} \mathrm{~kg}$
C. $\frac{8}{7} \mathrm{~kg}$
D. $\frac{5}{7} \mathrm{~kg}$

Answer: C

D Watch Video Solution

39. The equation $\left(P+\frac{a}{V^{2}}\right)(V-b)$ constant. The units of a are
A. dy ne $\times \mathrm{cm}^{5}$
B. dy ne $\times \mathrm{cm}^{4}$
C. dy ne $\times \mathrm{cm}^{-3}$
D. dy ne $\times \mathrm{cm}^{-2}$

Answer: B

D Watch Video Solution

40. The pressure on a circular plate is measured by measuring the force on the plate and the radius of the plate. If the errors in measurement of force and radius are 5% and
3%, respectively, then the percentage of error in the measurement of pressure is
A. 8
B. 14
C. 11
D. 12

Answer: C
(Watch Video Solution
41. A beam of natural light falls on a system of

5 polaroids, which are arranged in succession
such that the pass axis of each polaroid is turned through 60° with respect to the preceding one. The friction of the incident light intensity that passes through the system is :
A. 0.24
B. 0.16
C. 0.12

D. 0.32

Answer: B

D Watch Video Solution

42. Visible light of wavelength 6000×10^{-8}
cm falls normally on a single slit and produces
a diffraction pattern. It is found that the second diffraction minimum is at 60° from the central maximum. If the first minimum is produced at θ_{1}, then θ_{1} is close to :
A. 20°
B. 30°
C. 25°
D. 45°

Answer: C

D Watch Video Solution

43. Two wires made up of the same material are of equal lengths but their diameter are in
the ratio 1:2. On stretching each of these two
strings by the same tension, then the ratio of
the fundamental frequency of these strings is
A. $1: 2$
B. $2: 1$
C. 1: 4
D. $4: 1$

Answer: B
(Watch Video Solution
44. The phase difference between two points
is $\pi / 3$. If the frequency of wave is 50 Hz , then
what is the distance between two points?
(Given, $v=330 m s^{-1}$)
A. 2.2 m
B. 1.1 m
C. 0.6 m
D. 1.7 m

Answer: B
45. While slippling a on rough spherical surface of radius ' R ' , block A of mass ' m ' comes with velocity $\sqrt{1.4 g R}$ at bottom B . Work done in slippling the block from ' B ' to ' C ' is

A. $\frac{m g R}{4}$
B. mgR
C. 1.3 mgR
D. $\frac{5}{4} \mathrm{mgR}$

Answer: C

- Watch Video Solution

