©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 42

Physics

1. The distance of closest approach of an alpha-particle fired towards a nucleus with momentum p is r. What will be the distance of
closest approach when the momentum of alpha-particle is $2 p$?
A. $2 r$
B. $4 r$
C. $\frac{r}{2}$
D. $\frac{r}{4}$

Answer: D
(Watch Video Solution
2. The binding energies of the atoms of elements A and B are E_{a} and E_{b}, respectively.

Three atoms of the element B fuse to give one atom of element A. this fusion process is accompanied by release of energy E. then,
E_{a}, E_{b} are related to each other as
A. $E_{a}+E=3 E_{0}$
B. $E_{a}=3 E_{b}$
C. $E_{a}=3 E_{b}+E$
D. $E_{a}+3 E_{b}=E$

Answer: C

D Watch Video Solution

3. A ball strikes a smooth horizontal ground at an angle of 45° with the vertical. What cannot
be the possible angle of its velocity with the vertical after the collision. (Assume e ≤ 1).
A. 45°
B. 30°
C. 53°

D. 60°

Answer: B

D Watch Video Solution

4. A bullet of mass m is fired with a velocity of
$50 \mathrm{~ms}^{-1}$ at an angle θ with the horizontal . At
the highest point of its trajectory, it collides
head on with a body connected to massless
string of length I and gets embedded in the bob of mass 3m. After the collision , the string
moves to an angle of 120°. What is the angle
θ ?

A. $\cos ^{-1}\left(\frac{4}{5}\right)$
B. $\cos ^{-1}\left(\frac{5}{4}\right)$
C. $\sin ^{-1}\left(\frac{4}{5}\right)$
D. $\sin ^{-1}\left(\frac{5}{4}\right)$

Answer: A

D Watch Video Solution

5. In the given figure, a smooth parabolic wire track lies in the $x y$-plane (vertical). The shape of track is defined by the equation $y=x^{2}$. A ring of mass m which can slide freely on the wire track, is placed at the position $A(1,1)$.

The track is rotated with constant angular speed ω such that there is no relative slipping between the ring and the track. The value of ω

A. $\sqrt{\frac{g}{2}}$
B. \sqrt{g}
C. $\sqrt{2 g}$
D. $2 \sqrt{g}$

D Watch Video Solution

6. At a temperature of $30^{\circ} \mathrm{C}$, the susceptibility
of ferromagnetic material is found to be ' χ '
its susceptibility at $333^{\circ} C$ is
A. 0.5 X
B. 2 X
C. 11.1 X
D. 0.09 X

Answer: A

D Watch Video Solution

7. A uniform copper wire of length $1 m$ and cross section area $5 \times 10^{-7} m^{2}$ carries a current of $1 A$. Assuming that are 8×10^{28} free electron per m^{3} in copper, how long will an electron take to drift from one end of the wire an electron the other. Charge on an electron $=1.6 \times 10^{-19} C$
A. $0.8 \times 10^{3} s$
B. $1.6 \times 10^{3} s$
C. $3.2 \times 10^{3} s$
D. $6.4 \times 10^{3} s$

Answer: D

D Watch Video Solution

8. A galvanometer having a resistance of 20Ω and 30 divisions on both sides has figure of merit. 0.005 ampere /division. The resistance
that should be connected in series such that it
can be used as a voltmeter upto 15 V , is :
A. 120Ω
B. 100Ω
C. 80Ω
D. 125Ω

Answer: C

D Watch Video Solution
9. A telephone wire of length 200 km has a
capacitance of 0.014μ Fperkm. If it carries an
$A C$ of frequency $5 k H z$ what should be the
value of an inductor required to be connected
in series so that impedence of the circuit is minimum ?
A. 0.35 mH
B. 3.5 mH
C. 2.5 mH
D. zero

Answer: A

D Watch Video Solution

10. There is a horizontal cylindrical uniform
but time-varying magnetic field increasing at a
constant rate $d B / d t$ as shown in Fig. 3.173. A
charged particle having charge q and mass m
is kept in equilibrium, at the top of a spring of
spring constant K, in such a way that it is on
the horizontal line passing through the center
of the magnetic field as shown in the figure.

The compression in the spring will be

A. $\frac{1}{K}\left[m g-\frac{q R^{2}}{2 l} \frac{d B}{d t}\right]$
B. $\frac{1}{K}\left[m g+\frac{q R^{2}}{l} \frac{d B}{d t}\right]$
C. $\frac{1}{K}\left[m g+\frac{2 q R^{2}}{l} \frac{d B}{d t}\right]$
D. $\frac{1}{K}\left[m g+\frac{q R^{2}}{2 l} \frac{d B}{d t}\right]$

Answer: D

Watch Video Solution

11. A parallel plate capacitor with air as the dielectric has capacitance C. A slab of dielectric constant K and having the same thickness as the separation between plates is introduced so as to fill one-fourth of the capacitor as shown in the figure. The new capacitance will
be :

A. $(K+3) \frac{C}{4}$
B. $(K+2) \frac{C}{4}$
C. $(K+1) \frac{C}{4}$
D. $\frac{K C}{4}$

Answer: A
12. A $2 \mu F$ capacitor is charged as shown in the figure. The percentage of its stored energy dissipated after the switch S is turned to position 2 is

A. 0%
B. 20%
C. 75%
D. 80%

Answer: D

- Watch Video Solution

13. During an experiment with a metre bridge,
the galvanometer shows a null point when the
jockey is pressed at 40.0 cm using a standard resistance of 90Ω, as shown in the figure. The
least count of the scale used in the metre bridge is 1 mm . The unknown resistance is

A. $60 \pm 0.15 \Omega$
B. $135 \pm 0.56 \Omega$
C. $60 \pm 0.25 \Omega$
D. $135 \pm 0.23 \Omega$

Answer: C

D Watch Video Solution

14. Consider two solid spheres of radii
$R_{1}=1 m, R_{2}=2 m$ and masses M_{1} and M_{2}
, respectively . The gravitational field due to sphere (1) and (2) are shown. The value of $\frac{M_{1}}{M_{2}}$
is :

A. $\frac{3}{2}$
B. $\frac{1}{6}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: B

D Watch Video Solution

15. Two satellites, A and B, have masses m and

2 m respectively. A is in a circular orbit of radius R, and B is in a circular orbit of radius
$2 R$ around the earth. The ratio of their energies, $\frac{K_{A}}{K_{B}}$ is :
A. 2
B. $\frac{1}{2}$
C. 1
D. $\sqrt{\frac{1}{2}}$

Answer: C

D Watch Video Solution

16. If a body coated black at 600 k surrounded
by atmosphere at, 300 k has cooling rate r 1
the same body at 900 k surrounded by the same atmosphere, will have cooling rate equal to
A. $\frac{16}{3} r 1$
B. $\frac{18}{3} r 0$
C. $16 r 0$
D. $4 r 0$

Answer: A

D Watch Video Solution

17. Three identical rods $A B, C D$ and $P Q$ are
joined as shown. P and Q are mid points of
$A B$ and $C D$ respectively. Ends A, B, C and D
are maintained at $0^{\circ} C, 100^{\circ} C, 30^{\circ} C$ and $60^{\circ} \mathrm{C}$ respectively. The direction of heat flow in $P Q$ is

A. From P to Q

B. From Q to P

C. Heat does not flow in PQ

D. Date not sufficient

Answer: A

- Watch Video Solution

18. n moles of diatomic gas in a cylinder is at a temperature T. Heat is supplied to the cylinder such that the temperature remains constant but n moles of the diatomic gas get converted into monatomic gas. The change in the total kinetic energy of the gas is
A. 0
B. $\frac{5}{2} \mathrm{nRT}$
C. $\frac{3}{2} n R T$
D. $\frac{1}{2} \mathrm{nRT}$

Answer: D

- Watch Video Solution

19. An ideal gas mixture filled inside a balloon
expands according to the relation $P V^{2 / 3}=$
constant. What will be the temperature inside the balloon
A. Increasing
B. Decreasing
C. Constant

D. Can't be said

Answer: A
(Watch Video Solution
20. A solenoid has length 0.4 m , radius 1 cm
and 400 turns of wire. If a current fo 5 A is
passed through this solenoid, then what is the magnetic field inside the solenoid?

$$
\text { A. } 6.28 \times 10^{-4} T
$$

B. $6.28 \times 10^{-3} T$
C. $6.28 \times 10^{-7} T$
D. $6.28 \times 10^{-6} T$

Answer: B
21. A particle of charge ' q ' and mass ' m ' is projected from the origin with velocity $\left(u_{0} \hat{i}+v_{0} \hat{j}\right)$ in a gravity free region where uniform electric field $-E_{0} \hat{i}$ and uniform magnetic field $-B_{0} \hat{i}$ exist. Find the condition so that the particle would return to origin at least for once .
A. $\frac{\mu_{0} B_{0}}{2 \pi E_{0}}$ is an integer
B. $\sqrt{u_{0}^{2}+v_{0}^{2}} \frac{B_{0}}{\pi E_{0}}$ is an integer
C. $\frac{v_{0} B_{0}}{\pi B_{0}}$ is an integer
D. $\frac{\mu_{0} B_{0}}{\pi E_{0}}$ is an integer

Answer: D

D Watch Video Solution

22. The equations of motion of a projectile are given by $x=36 t m$ and $2 y=96 t-9.8 t^{2} m$.

The angle of projection is

$$
\text { A. } \sin ^{-1}\left(\frac{4}{5}\right)
$$

B. $\sin ^{-1}\left(\frac{3}{5}\right)$
C. $\sin ^{-1}\left(\frac{4}{3}\right)$
D. $\sin ^{-1}\left(\frac{3}{4}\right)$

Answer: A

D Watch Video Solution

23. A particle aimed at a target projected with
an angle 15° with the horizontal is short of
the target by 10 m . If projected with an angle
of 45° is away from the target by 15 m then the angle of projection to hit the target is
A. $\frac{1}{2} \sin ^{-1}\left(\frac{1}{10}\right)$
B. $\frac{1}{2} \sin ^{-1}\left(\frac{3}{10}\right)$
C. $\frac{1}{2} \sin ^{-1}\left(\frac{9}{10}\right)$
D. $\frac{1}{2} \sin ^{-1}\left(\frac{7}{10}\right)$

Answer: D

D Watch Video Solution

24. A sphere of mass m, is held between two smooth inclined walls. For $\sin 37^{\circ}=3 / 5$, the normal reactions of the wall (2) is equal to

A. $m g$
B. $m g \sin 74^{\circ}$
C. $m g \cos 74^{\circ}$
D. None of these

Answer: A

D Watch Video Solution

25. A steel wire can withstand a load up to

2940 N . A load of 150 kg is suspended from a
rigid support. The maximum angle through
which the wire can be displaced from the mean position, so that the wire does not break
when the load pass through the position of equilibrium, is
A. 30°
B. 60°
C. 80°
D. 85°

Answer: B
(Watch Video Solution
26. If the mass defect of ${ }_{5} B^{11}$ is 0.081 u , its average binding energy (in MeV) is
A. 8.60 MeV
B. 6.85 MeV
C. 6.60 MeV
D. 5.86 MeV

Answer: B
(Watch Video Solution
27. A radioactive sample S_{1} having an activity of $5 \mu C i$ has twice the number of nuclei as another sample S_{2} which has an activity of $10 \mu \mathrm{Ci}$. The half-lives of S_{1} and S_{2} can be
A. $4: 1$
B. 1:4
C. 1:2
D. 2:1

Answer: A

28. The potential energy of a particle executing S.H.M. is 2.5 J , when its displacement is half of amplitude. The total energy of the particle will be
A. 2.5 J
B. 10 J
C. 12 J
D. 20 J

- Watch Video Solution

29. A simple pendulum has time period (T_1).

The point of suspension is now moved upward according to the relation
$y=K t^{2},\left(K=1 m / s^{2}\right)$ where (y) is the vertical displacement. The time period now becomes (T_2). The ratio of $\frac{T_{1}^{2}}{T_{2}^{2}}$ is $\left(g=10 m / s^{2}\right)$.
A. $\frac{6}{5}$
B. $\frac{5}{6}$
C. 1
D. $\frac{4}{5}$

Answer: A

D Watch Video Solution

30. If r_{n} is the radius of $n^{\text {th }}$ orbit of hydrogen atom, then the relative change in the radius, when an electron jumps from $n^{\text {th }}$ orbit to
$(n-1)^{t h}$ orbit is $(n \gg 1)$
A. Directly proportional to n
B. Inversely proportional to n
C. Inversely proportional to n^{2}
D. Independent of n

Answer: B

- Watch Video Solution

31. When a certain photosensistive surface is
illuminated with monochromatic light of frequency v, the stopping potential for the
photo current is $-V_{0} / 2$. When the surface is
illuminated by monochromatic light of
frequency $v / 2$, the stopping potential is $-V_{0}$.
The threshold frequency gor photoelectric emission is :

> A. $\frac{5 v}{3}$
> B. $\frac{3 v}{3}$
> C. $\frac{4}{3} v$
D. 2 v

Answer: B
32. An iron bar of length 10 m is heated from
$0^{\circ} C$ to $100^{\circ} C$. If the coefficient of linear thermal expansion of iron is
$10 \times 10^{-6} .{ }^{\circ} C^{-1}$, then increase in the length of bar (in cm) is
A. 0.5 cm
B. 1.0 cm
C. 1.5 cm
D. 2.0 cm

Answer: B

- Watch Video Solution

33. Water rises to a height of 16.3 cm in a capillary of height 18 cm above the water level.

If the tube is cut at a height of 12 cm -
A. Water will come as a fountain from the
capillary .
B. Water will stay at a height of 12 cm in
capillary
C. The height of the water in the tube will
be 10.3 cm
D. Water will flow down the sides of the

capillary tube

Answer: B

D Watch Video Solution

34. An equiconvex lens is cut into two halves
along $(i) X O X^{\prime}$ and $(i i) Y O Y^{\prime}$ as shown in
the figure. Let $f, f^{\prime} f^{\prime \prime}$ be the focal lengths of
the complete lens, of each half in case (i), and of each half in case (ii), respectively

Choose the correct statement from the following

A. $f^{\prime}=f, f^{\prime \prime}=f$
B. $f^{\prime}=2 f, f "=2 f$
C. $f^{\prime}=f, f "=2 f$

$$
\text { D. } f^{\prime}=2 f, f "=f
$$

Answer: C

D Watch Video Solution

35. Two thin lenses have a combined power of +9 .When they are separated by a distance of

20 cm , then their equivalent power becomes $+\frac{27}{5}$ D. Their individual powers (in dioptre) are
A. 4,5
B. 3,6
C. 2,7
D. 1,8

Answer: B

D Watch Video Solution
36. Three identical rods, each of mass m and length l, form an equaliteral triangle. Moment
of inertia about one of the sides is

A. $\frac{2}{3} M l^{2}$
B. $\frac{M l^{2}}{4}$
C. $\frac{M l^{2}}{2}$
D. none

Answer: C
37. A hollow cylinder with inner radius R.

Outer radius $2 R$ mass M is rolling with speed of it's axis v. What is its kinetic energy?

A. $\frac{5}{6} M v^{2}$
B. $\frac{5}{2} M v^{2}$
C. $\frac{1}{2} M v^{2}$
D. $\frac{13}{16} M v^{2}$

Answer: D

- Watch Video Solution

38. A $n-p-n$ transistor conducts when
A. both collector and emitter are negative
with respect to the base potential
B. both collector and emitter are positive
with respect to the base potential
C. collector is positive and emitter is
negative with respect to the base potential
D. collector positive and emitter is at same potential as the base potential

- Watch Video Solution

39. A large parallel plate capacitor, whose plates have an area of $1 m^{2}$ and are separated from each other by 1 mm , is being charged at a rate of $25 \mathrm{Vs}^{-1}$. If the dielectric constant 10 , then the displacement current at this instant is
A. $25 \mu A$
B. $11 \mu A$
C. $2.2 \mu A$

D. $1.1 \mu \mathrm{~A}$

Answer: C

D Watch Video Solution

40. A steel wire, of uniform area $2 \mathrm{~mm}^{2}$, is
heated up to $50^{\circ} \mathrm{C}$ and is stretched by tying
its ends rigidly. The change in tension, when
the temperature falls from $50^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ is
(Take
$\left.Y=2 \times 10^{11} \mathrm{Nm}^{-2}, \alpha=1.1 \times 10^{-5^{\circ} \mathrm{C}-1}\right)$
A. $1.5 \times 10^{10} N$
B. $5 N$
C. $88 N$
D. $2.510^{10} N$

Answer: C

D Watch Video Solution
41. Number of particles is given by
$n=-D \frac{n_{2}-n_{1}}{x_{2}-x_{1}} \quad$ crossing a unit area
perpendicular to X-axis in unit time, where n_{1}
and n_{2} are number of particles per unit volume for the value of x meant to x_{2} and x_{1}.

Find dimensions of D called as diffusion constant
A. $\left[M^{0} L T^{2}\right]$
B. $\left[M^{0} L^{2} T^{-4}\right]$
C. $\left[M^{0} L T^{-3}\right]$
D. $\left[M^{0} L^{2} T^{-1}\right]$

Answer: D

42. A parallel beam of electrons, travelling in x

- direction, falls on a slit of width d (see the
figure). If after passing the slit, an electron acquires momentum P_{y} in the y direction, then for a majority of electrons passing through the slit , (h is Planck's constant)

A. $\left|P_{y}\right| d>h$
B. $\left|P_{y}\right| d \gg h$
C. $\left|P_{y}\right| d<h$
D. $\left|P_{y}\right| d \cong h$

Answer: A

D Watch Video Solution

43. A light of wavelength $6000 \AA$ is incident on
a single slit . First minimum is obtained at a
distance of 0.4 cm from the centre. If width of
the slit is 0.3 mm , the distance between slit and screen will be
A. 1.0 m
B. 1.5 m
C. 2.0 m
D. 2.3 m

Answer: C
(Watch Video Solution
44. Two tuning forks A and B are sounded together and it results in beats with frequency of 4 beats per second. When A is loaded with wax, they again produces 4 beats per second .

If frequency of A is 256 Hz , then the frequency of B is
A. 252 Hz
B. 262 Hz
C. (A) and (B) both
D. None

Answer: A

D Watch Video Solution

45. A star is moving away from earth and shift in spectral line of wavelength $5700 \AA$ is $1.90 \AA$.

Velocity of the star is :
A. $50 k m s^{-1}$
B. $70 \mathrm{~km} \mathrm{~s}^{-1}$
C. $85 k m s^{-1}$
D. $100 \mathrm{kms}^{-1}$

Answer: D

D Watch Video Solution

