© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 44

Physics

1. The magnetic needle of a vibration magnetometer makes 12 oscillations per minute in the horizontal component of earth's
magnetic field. When an external short bar magnet is placed at some distance along the axis of the needle in the same line it makes 15 oscillations per minute. If the poles of the bar magnet are inter changed, the number of oscillations it takes per minute is
A. $\sqrt{61}$
B. $\sqrt{63}$
C. $\sqrt{65}$
D. $\sqrt{67}$
2. The current flowing in 3Ω Resistance will be
3Ω

A. $\frac{8}{3} \mathrm{~A}$
B. $\frac{3}{8} \mathrm{~A}$
C. $\frac{1}{8} \mathrm{~A}$
D. $\frac{5}{8} \mathrm{~A}$

Answer: A

D Watch Video Solution

3. If the balance length corresponding to points B and C is 40 cm on the potentiometer wire, the balance length corresponding to
point C and D is

A. 25 cm
B. 32 cm
C. 40 cm
D. 64 cm

Answer: B

D Watch Video Solution

4. A square loop of side a is rotating about its
diagonal with angular velocity ω in a perpendicular magnetic field \vec{B} It has 10
turns. The emf induced is

A. $B a^{2} \sin \omega t$
B. $B a^{2} \cos \omega t$
C. $5 \sqrt{2} B a^{2}$
D. $10 B a^{2} \omega \sin \omega t$

Answer: D

D Watch Video Solution

5. A conducitng rod $A B$ of length $l=1 m$
moving at a velcity $v=4 m / s$ making an
angle 30° with its length. A uniform magnetic
field $B=2 T \quad$ exists in a direction
perpendicular to the plane of motion. Then :

A. $V_{A}-V_{B}=8 V$
B. $V_{A}-V_{B}=4 V$
C. $V_{B}-V_{B}=8 V$
D. $V_{B}-V_{A}=4 V$

Answer: B
6. Charges $+q$ and $-q$ are placed at points A and B respectively which are a distance $2 L$ apart, C is the midpoint between A and B.

The work done in moving a charge $+Q$ along the semicircle $C R D$ is

A. $\frac{q Q}{2 \pi \varepsilon_{0} L}$ and infinity
B. $\frac{q Q}{6 \pi \varepsilon_{0} L}$ and zero
C. zero , zero
D. $\frac{-q Q}{6 \pi \varepsilon_{0} L}$ and zero

Answer: D

D Watch Video Solution

7. The insulated spheres of radii R_{1} and R_{2}
having charges Q_{1} and Q_{2} respectively are connected to each other. There is
A. no change in the energy of the system
B. an increase in the energy of the system
C. always a decrease in the energy of the

system

D. a decrease in energy of the system
unless $q_{1} R_{2}=q_{2} R_{1}$

Answer: D

D Watch Video Solution

8. Four very long straight wires carry equal electric currents in the $+z$ direction. They intersect the $x y$ plane at
$(x, y)=(-a, 0),(0, a),(a, 0)$,
and
$(0,-a)$. The magnetic force exerted on the
wire at position $(-a, 0)$ is along
A. $+y-$ axis
B. $-y$ - axis
C. $+x-$ axis
D. $-x-$ axis

Answer: C

D Watch Video Solution

9. A proton, a deuteron and an α-particle with
the same KE enter a region of uniform magnetic field, moving at right angles to B.

What is the ratio of the radii of their circular paths ?
A. $1: \sqrt{2}: 1$
B. $1: \sqrt{2}: \sqrt{2}$
C. $\sqrt{2}: 1: 1$
D. $\sqrt{2}: \sqrt{2}: 1$

Answer: A

D Watch Video Solution

10. The radiation emitted by a star A is 10,000
times that of the sun. If the surface temperatures of the sun and the star A are 6000 K and 2000 K respectively, the ratio of the radii of the star A and the sun is
A. $300: 1$
B. 600: 1
C. $900: 1$
D. 1200: 1

Answer: C

D Watch Video Solution
11. An ideal gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If
the net heat supplied to the gas in the cycle is

5J, the work done by the gas in the process

CtoA is

A. $-5 J$
B. -10 J
C. $-15 J$
D. $-20 J$

Answer: A

- Watch Video Solution

12. A gas mixture consists of 2 moles of oxygen
and 4 moles of argon at temperature T.
Neglecting all vibrational modes, the total internal energy of the system is
A. 4 RT
B. 15RT
C. 9RT

D. 11 RT

Answer: D

D Watch Video Solution

13. A gas expands adiabatically at constant pressure such that its temperature $T \propto \frac{1}{\sqrt{V}}$, the value of C_{P} / C_{V} of gas is

A. 1.30

B. 1.50

C. 1.67

D. 2.00

Answer: B

D Watch Video Solution

14. If two rods of length L and $2 L$ having
coefficients of linear expansion α and 2α
respectively are connected so that total length
becomes 3L, the average coefficient of linear expansion of the composite rod equals

> A. $\frac{3}{2} \alpha$
> B. $\frac{5}{2} \alpha$
> C. $\frac{5}{3} \alpha$
> D. $\frac{5}{3} \alpha$

Answer: C

D Watch Video Solution
15. The steam point and the ice point of a mercury thermometer are marked as
80° and 10°. At what temperature on
centigrade scale the reading of this
thermometer will be 59° ?
A. $70^{\circ} C$
B. $60^{\circ} \mathrm{C}$
C. $80^{\circ} C$
D. none of these

Answer: A
(Watch Video Solution
16. A wire is 4 m long and has a mass 0.2 kg .

The wire is kept horizontally. A transverse pulse is generated by plucking one end of the taut (tight) wire. The pulse makes four trips back and forth along the cord in 0.8 sec . The tension is the cord will be -
A. 80 N
B. 160 N
C. 240 N
D. 320 N

Answer: A

D Watch Video Solution

17. A bus is moving with a velocity $10 \mathrm{~ms}^{-1}$ on a straight road. A scooterist wishes to overtake the bus in $100 s$. If the bus is at a distance of 1 km from the scooterist, with what velocity should the scooterist chase the bus?
A. $50 m s^{-1}$
B. $40 m s^{-1}$
C. $30 m s^{-1}$
D. $20 m s^{-1}$

Answer: D

- Watch Video Solution

18. When a man moves down the inclined
plane with a constant speed $5 m s^{-1}$ which makes an angle of 37° with the horizontal, he
finds that the rain is falling vertically
downward. When he moves up the same inclined plane with the same speed, he finds that the rain makes an angle $\theta=\tan ^{-1}\left(\frac{7}{8}\right)$ with the horizontal. The speed of the rain is
A. $\sqrt{116} m s^{-1}$
B. $\sqrt{32} m s^{-1}$
C. $5 m s^{-1}$

$$
\text { D. } \sqrt{73} m s^{-1}
$$

Answer: B

19. A metal sphere is hung by a string fixed to
a wall. The forces acting on the sphere are
shown in figure. Which of the following statements is/ are correct?

a. $\vec{N}+\vec{T}+\vec{W}=0$
b. $T^{2}=N^{2}+W^{2}$
с. $T=N+W$
d. $N=W \tan \theta$
A. a,b,c
B. b,c,d
C. a,b,d
D. a, b, c, d

Answer: C
(Watch Video Solution
20. A ball falls from a height of 5 m and strikes
a lift which is moving in the upward direction
with a velocity of $1 \mathrm{~ms}^{-1}$, then the velocity
with which the ball rebounds after collision
will be
A. $11 m s^{-1}$ downwards
B. $12 m s^{-1}$ upwards
C. $13 m s^{-1}$ upwards
D. $12 m s^{-1}$ downwards

Answer: B

- Watch Video Solution

21. A stone of mass 500 g is dropped from the top of a tower of 100 m height. Simultaneously another stone of mass 1 kg is thrown horizontally with a speed of $10 \mathrm{~ms}^{-1}$ from same point. The height of the centre of mass of the above two stone system after 3 sec is $\left(g=10 m s^{-2}\right)$
A. 45 m
B. 35 m
C. 55 m

D. none of these

Answer: C

D Watch Video Solution

22. A uniform chain of length L and mass M is
lying on a smooth table and one-third of its
length is hanging vertically down over the edge of the table. If g is the acceleration due
to gravity, the work required to pull the hanging part on to the table is
A. $M g L$
B. $\frac{M g L}{3}$
C. $\frac{M g L}{9}$
D. $\frac{M g L}{18}$

Answer: D

- Watch Video Solution

23. A body of mass m collides elastically with
another body at rest and then continues to
move in the original continues to move in the original direction with one half of its original speed. mass of the body is
A. $m \mathrm{~kg}$
B. $\frac{2}{3} \mathrm{mkg}$
C. $\frac{m}{3} \mathrm{~kg}$
D. $\frac{m}{2} \mathrm{~kg}$

Answer: C
24. A particle is given an initial speed u inside a smooth spherical shell of radius $R=1 \mathrm{~m}$
such that it is just able to complete the circle.
Acceleration of the particle when its velocity is

vertical is

A. $g \sqrt{10}$
B. g
C. $g \sqrt{2}$
D. 3 g

Answer: A

D Watch Video Solution

25. A body of mass m is taken from earth
surface to the height h equal to radius of earth, the increase in potential energy will be
A. $m g R$
B. $\frac{1}{2} \mathrm{mgR}$
C. 2 mgR
D. $\frac{1}{4} \mathrm{mgR}$

Answer: B

- Watch Video Solution

26. A geostationary satellite is orbiting the earth at a height of $6 R$ above the surface of the earth, where R is the radius of the earth.

The time period of another satellite at a height of 2.5 R from the surface of the earth is hours.
A. $6 \sqrt{2} \mathrm{hr}$
B. 6 hr
C. $5 \sqrt{2} \mathrm{hr}$
D. 10 hr

Answer: A

D Watch Video Solution

27. A mass M is suspended from a light spring. An additional mass m added to it displaces the spring further by distance x then its time period is

$$
\begin{aligned}
& \text { A. } T=2 \pi \sqrt{\frac{m g}{(M+m) X}} \\
& \text { B. } T=2 \pi \frac{\sqrt{(M+m) X}}{m g} \\
& \text { C. } T=\frac{\pi}{2} \sqrt{\frac{m g}{(M+m) X}} \\
& \text { D. } T=2 \pi \sqrt{\frac{M+m}{m g X}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

28. Two blocks each of mass m are connected with springs each of force constant K as
shown in fig. The mass A is displaced to the left \& B to the right by the same amount and released then the time period of oscillation is -

A. $2 \pi \sqrt{\frac{M}{K}}$
B. $2 \pi \sqrt{\frac{m}{2 K}}$
C. $\pi \sqrt{\frac{m}{K}}$
D. $\pi \sqrt{\frac{m}{2 K}}$
29. A liquid can easily change its shape but a solid can not because
A. the density of a liquid is smaller than
that of a solid
B. the forces between the molecules is stronger in solid than in liquids
C. the atoms combine to form bigger molecules in a solid

D. the average separation between the

molecules is larger in solids

Answer: B

D Watch Video Solution

30. The graph between the mass of liquid inside the capillary and radius of capillary is

Answer: C

- Watch Video Solution

31. For a sphere made out of a certain material, the moment of inertia of the sphere
is proportional to [radius of the sphere $=R$]
A. R^{2}
B. R^{3}
C. R^{4}
D. R^{5}

Answer: A

D Watch Video Solution
32. A projectile is fired with velocity v_{0} at angle 60° with horizontal. At top of its trajectory it explodes into three fragments of equal masses. First fragment retraces the path, second moves vertically upwards with speed $\frac{3 v_{0}}{2}$. Speed of the third fragment is
A. $\frac{3 v_{0}}{2}$
B. $\frac{5 v_{0}}{2}$
C. v_{0}
D. $2 v_{0}$

Answer: B

D Watch Video Solution

33. A particle moving with a velocity $\frac{1^{t h}}{10} \mathrm{f}$ that of light will cross a nucleus in about
A. $10^{47} s$
B. $10^{-22} \mathrm{~s}$
C. $10^{-12} \mathrm{~s}$
D. $10^{-8} \mathrm{~s}$

Answer: B

D Watch Video Solution

34. When a hydrogen atom emits a photon in going from $n=5$ to $n=1$, its recoil speed is almost
A. $10^{-4} m s^{-1}$
B. $2 \times 10^{-2} \mathrm{~ms}^{-1}$
C. $4 m s^{-1}$
D. $8 \times 10^{2} m s^{-1}$

Answer: C

D Watch Video Solution

35. Consider the nuclear reaction
$X^{200} \rightarrow A^{110}+B^{80}+10 n^{1}$. If the binding
energy per nucleon for X, A and B are 7.4 MeV ,
8.2 MeV and 8.1 MeV respectively, then the energy released in the reaction:
A. 70 MeV
B. 200 MeV

C. 190 MeV

D. 10 MeV

Answer: A

D Watch Video Solution

36. When photons of energy hv are incident on
the surface of photosensitive material of work
function $h v_{0}$, then
A. the kinetic energy of all emitted electrons is $h v_{0}$
B. the kinetic energy of all emitted
electrons is $h\left(v-v_{0}\right)$
C. the kinetic energy of all fastest emitted
electrons is $h\left(v-v_{0}\right)$
D. the kinetic energy of all emitted
electrons is hv

Answer: C
37. We wish to observe an object which is $2.5 \AA$
in size. The minimum energy photon that can be used is
A. 5 keV
B. 8 keV
C. 10 keV
D. 12 keV

Answer: A

D Watch Video Solution

38. Following circuit is equivalent to

A. AND gate
B. OR gate
C. NOT gate
D. X - OR gate
39. In a transistor
A. emitter is more highly doped than collector
B. collector is more highly doped than emitter
C. both emitter and collector are equally doped
D. none of these

Answer: A
(D) Watch Video Solution
40. Current through the ideal diode is

A. zero
B. 20 A

> C. $\frac{1}{20} A$
> D. $\frac{1}{50} A$

Answer: A

D Watch Video Solution

41. The logic circuit shown below has the input
waveforms ' A ' and ' B ' as shown. Pick out the
correct output waveform

A.

B.

C.

D.

Answer: A

D Watch Video Solution
42. A piece of glass is placed on a paper having letters of different colours. The letters of which colour will be raised maximum is
A. red
B. green
C. yellow
D. violet

Answer: D
43. If the refracting angle of a prism is 60° and the minimum deviation is 30°, then the angle of incidence is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: B

D Watch Video Solution
44. In Davisson-Germer experiment, the correct relation between angle of diffraction ϕ and glancing angle θ is-

$$
\text { A. } \theta=90^{\circ}-\frac{\phi}{2}
$$

B. $\phi=\frac{\theta}{2}-90^{\circ}$
C. $\theta=90^{\circ}-\phi$
D. $\phi=90^{\circ}-\theta$

Answer: A

Watch Video Solution

45. The maximum intensity in young's doubleslit experiment is I_{0}. Distance between the slit is $d=5 \lambda$, where λ is the wavelength of monochromatic light used in the experiment.

What will be the intensity of light in front of one of the slits on a screen at a distance $D=10 d ?$
A. $\frac{I_{0}}{2}$
B. $\frac{3}{4} I_{0}$
C. I_{0}
D. $\frac{I_{0}}{4}$

Answer: A
(D) Watch Video Solution

