đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 45

Physics

1. The ratio of the wavelengths for $2 \rightarrow 1$
transition in $\mathrm{Li}^{++}, \mathrm{He}^{+}$and H is
A. $1: 2: 3$
B. $\frac{1}{9}: \frac{1}{4}: \frac{1}{1}$
C. $1: 4: 1$
D. $3: 2: 1$

Answer: B

D Watch Video Solution

2. An α particle and a proton are accelerated from rest by a potential difference of 100 V .

After this, their de-Broglie wavelengths are λ_{a}
and λ_{p} respectively. The ratio $\frac{\lambda_{p}}{\lambda_{a}}$, to the nearest integer, is.
A. 3
B. 2
C. 4
D. 5

Answer: A

D Watch Video Solution
3. Two homogeneous spheres A and B of masses m and $2 m$ having radii $2 a$ and a respectively are placed in contact. The ratio of distance of c.m from first sphere to the distance of c.m from second sphere is :
A. a
B. 2 a
C. 3a
D. None of these

Answer: B

- Watch Video Solution

4. Three identical spheres lie at rest along a
line on a smooth horizontal surface. The separation between any two adjacent spheres is L. The first sphere is moving with a velocity u towards the second sphere at time $t=0$. The coefficient of restitution for a collision between any two blocks is $\frac{1}{3}$ The correct statement is
A. The third sphere will start moving at

$$
t=\frac{5 L}{2 u}
$$

B. The third sphere will start moving at

$$
t=\frac{4 L}{u}
$$

C. The centre of mass of the system will
have a final speed $2 u$
D. The centre of mass of the system will
have of final speed u

Answer: A

5. A particle performing uniform circular motion gas angular momentum L. If its angular frequency is double and its kinetic energy halved, then the new angular momentum is :
A. 2 L
B. 4L
C. L/2
D. L/4

Answer: D

D Watch Video Solution

6. The same current I flows in two long parallel
conductors at a distance 2 d , as shown. The
strength of the magnetic field at a point P,
equidistant from both conductors, is

A. $\frac{\mu_{0} I d}{4 \pi a}$
B. $\frac{\mu_{0} I d}{2 \pi a}$
C. $\frac{\mu_{0} I d}{4 \pi a^{2}}$
D. $\frac{\mu_{0} I d}{\pi a^{2}}$

Answer: D

D Watch Video Solution

7. One mole of an ideal monoatomic gas undergoes a cyclic process, as shown in the
figure. If the temperature of the gas at state 1 is 300 K and at state 4 is 500 K , then heat
exchanged during process $2 \rightarrow 3$, is

A. 1000 R
B. 600R
C. 750R
D. 800 R

Watch Video Solution

8. In the network shown in figure each resistance is 1Ω. The effective resistance between A and B is

A. $\frac{4}{3} \Omega$
B. $\frac{3}{2} \Omega$
C. 7Ω

D. $\frac{8}{7} \Omega$

Answer: D

D Watch Video Solution

9. An aeroplane, in which the distance between
the tips of thie wings is 50 m , is flying horizontally with a speed of $360 \mathrm{~km} /$ hour, over a place where the vertical component of earth's magnetic field is 2.0×10^{-4} tesla. The
potential difference between the tips of the wings would be
A. 0.1 V
B. 1.0 V
C. 0.2 V
D. 0.01 V

Answer: B
(Watch Video Solution
10. The figure shows a region containing a uniform magnetic field B, which is increasing at the rate $\frac{d B}{d t}$ The region is gravity free. A disc of mass m and radius R is kept in this magnetic field. Two charged particles having charge q_{1} and q_{2} and masses m and 2 m are embedded to the non-conducting disc on the circumference at diametrically opposite points. The disc is free to translate as well as rotate.

If $q_{1}=-q$ and $q_{2}=q$, then the initial acceleration of q_{1} will be
A. $\frac{q R}{3 m} \frac{d B}{d t}$
B. $\frac{2 q R}{3 m} \frac{d B}{d t}$
C. $\frac{2 q R}{m} \frac{d B}{d t}$
D. $\frac{q R}{m} \frac{d B}{d t}$

Answer: A

D Watch Video Solution

11. Two non-conducting solid spheres of radii R
and $2 R$, having uniform volume charge densities ρ_{1} and ρ_{2} respectively, touch each other. The net electric field at a distance $2 R$ from the centre of the smaller sphere, along
the line joining the centres of the spheres, is
zero. The ratio $\frac{\rho_{1}}{\rho_{2}}$ can be
A. 2
B. 8
C. 4
D. 5

Answer: C

D Watch Video Solution
12. Minimum number of capacitors each of
$8 \mu F$ and 250 V used to make a composite capacitor of $16 \mu F$ and 1000 V are
A. 4
B. 32
C. 8
D. 3

Answer: B

D Watch Video Solution
13. The bob of a pendulum is released from a
horizontal position. If the length of pendulum
is 2 m , what is the speed with which the bob
arrives at the lower most point. Assume that
10% of its energy is dissipated against air resistance.
(Take $g=10 m s^{-2}$)
A. $8 m s^{-1}$
B. $4.5 m s^{-1}$
C. $5 m s^{-1}$

D. $6 m s^{-1}$

Answer: D

D Watch Video Solution

14. A point P lies on the axis of a fixed ring of mass M and radius a, at a distance a from its
centre C. A small particle starts from P and reaches C under gravitational attraction only. Its speed at C will be.

$$
\text { A. } \sqrt{\frac{2 G M}{a}}
$$

> B. $\sqrt{\frac{G M}{a}}$
> C. $\sqrt{\frac{2 G M}{a}(\sqrt{2}-1)}$
> D. $\sqrt{\frac{2 G M}{a}\left(1-\frac{1}{\sqrt{2}}\right)}$

Answer: D

D Watch Video Solution

15. If ' g ' is the potential energy of an object of mass 'm' raised from the surface of the earth to a height equal to the radius ' R ' of the earth
A. $m g R$
B. $\frac{m g R}{2}$
C. $\frac{m g R}{3}$
D. $\frac{m g R}{4}$

Answer: B

D Watch Video Solution

16. A slab consists of two layers of different materials of the same thickness and having
thermal conductivities K_{1} and K_{2}. The equivalent thermal conductivity of the slab is
A. $K_{1}+K_{2}$
B. $\sqrt{K_{1}+K_{2}}$
C. $\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$
D. $\sqrt{\frac{K_{1} K_{2}}{K_{1}+K_{2}}}$

Answer: C

D Watch Video Solution

17. A spherical black body with a radius of 12 cm radiates 450 W power at 500 K . If the radius were halved and the temperature doubled, the power radiated in watt would be
(a)225 (b)450
(c) $900(\mathrm{~d}) 1800$
A. 225
B. 450
C. 900
D. 1800

Answer: D

- Watch Video Solution

18. Which of the following graphs correctly
represents the variation of $\beta=-\frac{d V / d P}{V}$
with P for an ideal gas at constant

temperature?

C.

D.

Answer: A
(D) Watch Video Solution

19. Figure shows the adiabatic curve for n moles of an ideal gas, the bulk modulus for the gas corresponding to the point P will be | $5 V_{0}-$ Tangent |
| :--- |
| $4 V_{0}$ |
| $3 V_{0}$ |
| $2 V_{0}$ |
| V_{0} |

A. $\frac{5 n R T_{0}}{3 V_{0}}$
B. $n R\left(2+\frac{T_{0}}{V_{0}}\right)$
C. $n R\left(1+\frac{T_{0}}{V_{0}}\right)$
D. $\frac{2 n R T_{0}}{V_{0}}$

Answer: D

D Watch Video Solution

20. Two long parallel wires are at a distance $2 d$ apart. They carry steady equal currents flowing out of the plane of the paper, as shown. The variation of the magnetic field B along the line $X X$ is given by
A.

C.

D.

Answer: B

D Watch Video Solution

21. An electron $\left(q=1.6 \times 10^{-19} C\right)$ is moving

at right angles to a uniform magnetic field of
$3.534 \times 10^{-5} \mathrm{~T}$ The time taken by the electron to complete a circular orbit is
A. $2 \mu s$
B. $4 \mu s$
C. $3 \mu s$
D. $1 \mu s$

Answer: D

22. Two particles are projected simultaneously with same speed V_{0} in same vertical plane at angle 30° and 60° With the horizontal .The
time at which their velocities becomes parallel
is

$$
\begin{aligned}
& \text { A. } \frac{V_{0}}{2 g} \\
& \text { B. } V_{0}\left(\frac{\sqrt{3}+1}{2 g}\right) \\
& \text { C. } \frac{\sqrt{3} V_{0}}{2 g} \\
& \text { D. } \frac{V_{0}(\sqrt{3}-1)}{g}
\end{aligned}
$$

Answer: B

- Watch Video Solution

23. A room (cubical) is made of mirros. An insect is moving along the diagonal on the floor such that the velocity of image of insect on two adjacent wall mirrors is $10 \frac{\mathrm{~cm}}{\mathrm{sec}}$. The velocity of image of insect in ceiling mirror is
A. $10 \mathrm{cms}^{-1}$
B. $20 \mathrm{cms}^{-1}$

> C. $\frac{10}{\sqrt{2}} \mathrm{cms}^{-1}$
> D. $10 \sqrt{2} \mathrm{cms}^{-1}$

Answer: D

D Watch Video Solution

24. A body of mass 2 kg moving on a horizontal
surface with an initial velocity of $4 m s^{-1}$ comes to rest after 2 second. If one wants to keep this body moving on the same surface with a velocity of $4 m s^{-1}$ the force required is
A. 8 N
B. 4 N
C. zero
D. 2 N

Answer: B

D Watch Video Solution

25. A horizontal constant force F pulls a block of mass m placed on a horizontal surface. If
the coefficient of kinetic friction between the
block and ground is μ, find the power delivered by the external agent after a time t measured from the beginning of action of the force.
A. $m a^{2} t$
B. $\mu m g a t$
C. $\mu m(a+\mu g) \mathrm{gt}$
D. $m(a+\mu g) a t$

Answer: D

26. The count rate of a Geiger Muller counter for the radiation of a radioactive material of half-life 30 min decreases to $5 s^{-1}$ after $2 h$. The initial count rate was
A. $25 s^{-1}$
B. $80 s^{-1}$
C. $625 s^{-1}$
D. $20 s^{-1}$
27. The binding energy per nucleon of deuterium and helium nuclei are 1.1 MeV and 7.0 MeV respectively. When two deuterium nuclei fuse to form a helium nucleus the energy released in the fusion is
A. 13.9 MeV
B. 26.9 MeV
C. 23.6 MeV
D. 19.2 MeV

Answer: C

D Watch Video Solution

28. The ratio of frequencies of two pendulums
are $2: 3$, then their length are in ratio
A. $\sqrt{2 / 3}$
B. $\sqrt{3 / 2}$
C. $4 / 9$
D. $9 / 4$

Answer: D

D Watch Video Solution

29. A pendulum clock Which ticks 60 times is
one minute on earth is placed on the moon
where the acceleration due to gravity is only
one - sixth of that one the earth. How many
times the clock will tick over there in one minute?
A. 12.25
B. 24.5
C. 2.24
D. 0.245

Answer: B

D Watch Video Solution

30. A charged oil drop falls with terminal velocity v_{0} in the absence of electric field. An electric field E keeps it stationary. The drop acquires charge 3q, it starts moving upwards
with velocity v_{0}. The initial charge on the drop
is

> A. $\frac{q}{2}$
> B. q
> C. $\frac{3}{2} q$
> D. $2 q$

Answer: C
(Watch Video Solution
31. Wavelength of a $1 k e V$ photon is $1.24 \times 10^{-9} \mathrm{~m}$. What is the frequency of 1 MeV photon?
A. $2.5 \times 10^{15} \mathrm{~Hz}$
B. $2.5 \times 10^{20} \mathrm{~Hz}$
C. $1.24 \times 10^{15} \mathrm{~Hz}$
D. $1.24 \times 10^{20} \mathrm{~Hz}$

Answer: B

D Watch Video Solution
32. A ball whose density is $0.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
falls into water from a height of 9 cm . To what depth does the ball sink ?
A. 9 cm
B. 6 cm
C. 4.5 cm
D. 2.25 cm

Answer: B

- Watch Video Solution

33. If the compressibility of water is σ per unit atmospheric pressure, then the decrease in volume V due to atmospheric pressure P will be
A. $\sigma P / V$
B. $\sigma P V$
C. $\sigma / P V$
D. $\sigma V / P$

Answer: B
34. A wire mesh consisting of very small squares is viewed at a distance of 8 cm through a magnifying converging lens of focal length 10 cm , kept close to the eye. The magnification produced by the lens is:
A. 5
B. 8
C. 10
D. 20

Answer: A

- Watch Video Solution

35. A short linear object of length b lies on the axis of a concave mirror of focal length F at a distance u from the pole. The length of the image will be
A. $\left(\frac{f}{u-f}\right) b$
B. $\left(\frac{u-f}{f}\right) b$
C. $\left(\frac{f}{u-f}\right)^{2} b$

$$
\text { D. }\left(\frac{u-f}{f}\right)^{2} b
$$

Answer: C

D Watch Video Solution

36. A solid cylinder of mass M and radius R rolls down an inclined plane of height h. The angular velocity of the cylinder when it reaches the bottom of the plane will be :

$$
\text { A. } \frac{2}{R} \sqrt{g h}
$$

B. $\frac{2}{R} \sqrt{\frac{g h}{2}}$
C. $\frac{2}{R} \sqrt{\frac{g h}{3}}$
D. $\frac{1}{2 R} \sqrt{g h}$

Answer: C

D Watch Video Solution

37. A particle of mass $m=1 k g$ is projected with speed $u=20 \sqrt{2} m / s$ at angle $\theta=45^{\circ}$ with horizontal find the torque of the weight
of the particle about the point of projection when the particle is at the highest point.
A. $400 N-m$
B. $200 N-m$
C. $150 N-m$
D. $450 N-m$

Answer: A
(Watch Video Solution
38. The value of the resistor, R_{S}, needed in the dc voltage regulator circuit shown here, equals :-

A. $\frac{\left(V_{i}+V_{L}\right)}{(n+1) I_{L}}$
B. $\frac{\left(V_{i}-V_{L}\right)}{n I_{L}}$
C. $\frac{\left(V_{i}+V_{L}\right)}{n I_{L}}$
D. $\frac{\left(V_{i}-V_{L}\right)}{(n+1) I_{L}}$

Answer: D

D Watch Video Solution

39. Digital circuit can be made by the repetitive use of
A. OR gates
B. AND gates
C. NOT gates
D. NAND gates

Answer: D

D Watch Video Solution

40. $1.56 \times 10^{5} \mathrm{~J}$ of heat is conducted through
is $2 m^{2}$ wall of 12 cm thick in one hour.

Temperature difference between the two sides
of the wall is $20^{\circ} \mathrm{C}$. The thermal conductivity
of the material of the wall is (in $W m^{-1} K^{-1}$)
A. 0.11
B. 0.13

C. 0.15

D. 1.2

Answer: B

- Watch Video Solution

41. If the unit of force is 100 N , unit of length is

10 m and unit of time is 100 s , what is the unit of mass in this system of units?
A. $10^{5} \mathrm{~kg}$
B. $10^{6} \mathrm{~kg}$
C. $10^{2} \mathrm{~kg}$
D. $10^{3} \mathrm{~kg}$

Answer: A

D Watch Video Solution

42.

Two
waves
$y_{1}=3 \sin \omega t c m$ and $Y=4 \cos \left(\omega t+\frac{\pi}{2}\right) \mathrm{cm}$ product the interference pattern. Then the amplitude of the resultant wave will be
A. 1 cm
B. 3 cm
C. 4 cm
D. 5 cm

Answer: A

D Watch Video Solution

43. A thin transparent sheet is placed in from
of a Young's double slit. The fringe width will
A. Increase
B. Decrease
C. Remain same
D. Become non - uniform

Answer: C

D Watch Video Solution

44. A source of sound of frequency 500 Hz is moving towards an observer with velocity 30
m / s. The speed of sound is $330 \mathrm{~m} / \mathrm{s}$. the frequency heard by the observer will be
A. 500 Hz
B. 550 Hz
C. 355 Hz
D. 55.5 Hz

Answer: B
(Watch Video Solution
45. When a train is at a distance of 2 km , its engine sounds a whistle . A man near the railway track hears the whistle directly and by placing his ear against the track of the train. If the two sounds are heard at an internal of 5.2
s , the speed of the sound in iron (material of the rail track) is : (Given that velocity of sound in air is $330 \mathrm{~m} \mathrm{~s}{ }^{-1}$)
A. $2,325.6 m s^{-1}$
B. $1,932.4 m s^{-1}$
C. $2,132.5 \mathrm{~ms}^{-1}$
D. $3,213.2 m s^{-1}$

Answer: A

D Watch Video Solution

