đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 46

Physics

1. A magnet suspended at 30° with magnetic meridian makes an angle of 45° with the
horizontal. What shall be the actual value of
the angle of dip?
A. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. $\tan ^{-1}(\sqrt{3})$
C. 45°
D. 30°

Answer: A

- Watch Video Solution

2. Equivalent resistance between points A \& B

in the given circuit is

A. $\frac{R}{6}$
B. $\frac{R}{3}$
C. $\frac{2 R}{3}$
D. $\frac{5 R}{3}$

Answer: A

D Watch Video Solution

3. In an experiment to measure the internal resistance of a cell by potentiometer, it is found that the balance point is at a length of

2 m when the cell is shunted by a 4Ω resistance and at 3 m when cell is shunted by
a 8Ω resistance. The internal resistance of cell is -
A. 12Ω
B. 8Ω
C. 16Ω
D. 1Ω

Answer: B

D Watch Video Solution
4. The flux linked with a coil at any instant ' t ' is
given by $\phi=10 t^{2}-50 t+250$

The induced emf at $t=3 s$ is
A. 10 V
B. 190 V
C. -190 V
D. -10 V

Answer: D

D Watch Video Solution

5. An electron moves along the line $A B$ with constant velocity V which lies in the same plane as a circular loop of conducting wire, as
shown in the figure. What will be the direction

of current induced in the loop?

A $e^{-} V$ B

A. no current will be induced
B. induced current will be clockwise
C. induced current will be anticlockwise
D. the current will change direction as the
electron passes by

Answer: D

D Watch Video Solution

6. Eight charges each of value q are placed on
a ring of radius R placed in $x-y$ plane with
origin at centre. A-q charge having mass m is
projected from $z=\infty$ towards the centre of
the ring with velocity v. The velocity of -q when it reaches the centre of ring is (neglect

A. $\sqrt{\frac{8 k q^{2}}{m R}}$
B. $\sqrt{\frac{8 k q^{2}}{m R}+v}$
C. $\sqrt{\frac{16 k q^{2}}{m R}+v^{2}}$
D. $\sqrt{\frac{16 k q^{2}}{m R}+v}$

Answer: C
7. A condenser of capacitance $10 \mu F$ has been charged to 100 V . It is now connected to another uncharged condenser in parallel. The common potential becomes 40 V . The capacitance of another condenser is
A. $15 \mu F$
B. $5 \mu F$
C. $10 \mu F$
D. $16 u m F$

Answer: A

D Watch Video Solution

8. If magnetic field is along $+z-$ axis and a potential difference is applied across an ionized gas chamber placed in the $x-y$ plane

(i) Magnetic force on positive ions will act along + y axis
(ii) Magnetic force on electrons will act along
$+y$ axis
A. both (i) and (ii) are correct
B. both (i) and (ii) are wrong
C. only (i) is correct

D. only (ii) is correct

Answer: B

D Watch Video Solution

9. A uniform magnetic field exist in a region
which forms an equilateral triangle of side a.

The magnetic field is perpendicular to the plane of the triangle. A charged q enters into this magnetic field perpendicular to a side with speed v. The charge enters from midpoint
and leaves the field from midpoint of other side. Magnetic induction in the triangles is

> A. $\frac{m v}{q a}$
> B. $\frac{2 m v}{q a}$
> C. $\frac{m v}{2 q a}$
> D. $\frac{m v}{4 q a}$

Answer: B

D Watch Video Solution

10. A star which appears blue will be

A. very cold
B. colder than the Sun
C. a black hole

D. hotter than the Sun

Answer: D

11. The $P-V$ diagram of a system undergoing
thermodynamic transformation is shown in
figure . The work done on the system in going
from $A \rightarrow B \rightarrow C$ is 50 J and 20 cal heat is
given to the system. The change in internal
energy between A and C is -

A. 34 J
B. 70 J
C. 84 J
D. 134 J

Answer: A

D Watch Video Solution

12. The ratio of work done by an ideal diatomic gas to the heat supplied by the gas in an isobatic process is

5

A. $\frac{5}{7}$
B. $\frac{3}{5}$
C. $\frac{2}{7}$
D. $\frac{5}{3}$

Answer: C

D Watch Video Solution

13. During the melting of a slab of ice at 273 K at atmospheric pressure,
A. positive work is done by ice - water system on the atmosphere
B. positive work is done on the ice - water
system by the atmosphere
C. the internal energy of the ice - water
system decreases
D. the internal energy of the ice - water
system remains same

Answer: B

14. The reading of brass scale at room temperature is L_{1}. Above room temperature reading is L_{2} and below room temperature reading is L_{3}. Then, relation between the readings is
A. $L_{1}>L_{2}>L_{3}$
B. $L_{3}>L_{1}>L_{2}$
C. $L_{2}>L_{3}>L_{1}$
D. $L_{1}=L_{2}=L_{3}$

Answer: B

D Watch Video Solution

15. Thermometer A and B have ice points marked at 15° and 25° and steam points at
75° and 125° respectively. When thermometer
A measures the temperature of a bath as 60°,
the reading of B for the same bath is
A. 60°
B. 75°
C. 100°
D. 90°

Answer: C

D Watch Video Solution

16. The speed of a wave in a streched string is
$20 \mathrm{~ms}^{-1}$ and its frequency is 50 Hz . Calculate
the phase difference in radian between two
points situated at a distance of 10 cm on the string.
A. $\frac{\pi}{2}$
B. π
C. $\frac{3 \pi}{2}$
D. 2π

Answer: A

D Watch Video Solution
17. A particle moves along a straight line path.

After some time it comes to rest. The motion
is with constant acceleration whose direction with respect to the direction of velocity is:
A. positive throughout motion
B. negative throughout motion
C. first positive then negative
D. first negative then negative

Answer: B

D Watch Video Solution

18. Ratio of minimum kinetic energies of two
projectiles of same mass is $4: 1$. The ratio of
the maximum height attained by them is also
$4: 1$. The ratio of their ranges would be
A. $16: 1$
B. $4: 1$
C. $8: 1$
D. $2: 1$

Answer: B
19. Two blocks ' A ' and ' B ' each of mass ' m ' are placed on a smooth horizontal surface. Two
horizontal force F and $2 F$ are applied on the blocks A and B , respectively, as shown in figure . The block A does not slide on block B .

The normal reaction acting between the two blocks is

A. F
B. $\frac{F}{2}$
C. $\frac{F}{\sqrt{3}}$
D. 3 F

Answer: D

- Watch Video Solution

20. A particle of mass 1 g moving with a velocity $\vec{v}_{1}=3 \hat{i}-2 \hat{j} m s^{-1}$ experiences a perfectly in elastic collision with another
particle of mass 2 g and velocity $\vec{v}_{2}=4 \hat{j}-6 \hat{k} m s^{-1}$. The velocity of the particle is
A. $\hat{i}+2 \hat{j}-4 \hat{k}$
B. $\hat{i}-2 \hat{j}+4 \hat{k}$
C. $\hat{i}-2 \hat{j}-4 \hat{k}$
D. $\hat{i}+3.33 \hat{j}+4 \hat{k}$

Answer: A

D Watch Video Solution
21. From a uniform circular plate of radius R, a small circular plate of radius $R / 4$ is cut off as shown. If O is the centre of the complete plate, then the x coordinate of the new centre of mass of the remaining plate will be:

$$
\text { A. }-\frac{R}{20}
$$

> B. $-\frac{R}{16}$
> C. $-\frac{R}{15}$
> D. $-\frac{R}{12}$

Answer: A

- Watch Video Solution

22. If the external forces acting on a system
have zero resultant, the centre of mass
A. must not move
B. must not accelerate
C. must move
D. may accelerate

Answer: B

D Watch Video Solution

23. A particle of mass m moving with velocity
$1 m / s$ collides perfectly elastically with another stationary particle of mass $2 m$. If the incident particle is deflected by 90°, the heavy
mass will make an angle θ with the initial direction of in equal to
A. 60°
B. 45°
C. 15°
D. 30°

Answer: D
(Watch Video Solution
24. A stone hanging from a massless string of
length 15 m is projected horizontally with
speed $\sqrt{147} \mathrm{~ms}^{-1}$ Then the Speed of the particle, at the point where tension in string equals the weight of particle, is
A. $10 m s^{-1}$
B. $7 m s^{-1}$
C. $12 m s^{-1}$
D. none of these

Answer: B

- Watch Video Solution

25. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is
very small compared to the mass of the earth.
A. the acceleration of S is always directed
towards the centre of the earth
B. The angular momentum of S about the
centre of the earth changes in direction ,
but its magnitude remains constant
C. the total mechanical energy of S varies
periodically with time
D. the linear momentum of S remains
constant in magnitude

Answer: A

D Watch Video Solution

26. A projectile is projectile with velocity $k v_{e}$ in vertically upward direction from the ground into the space (v_{e} is escape velocity and $k<1$
). If air resistance is considered to be negligible then the maximum height from the centre of earth to which it can go, will be : (R =raduis of earth)

$$
\begin{aligned}
& \text { A. } \frac{R}{k^{2}+1} \\
& \text { B. } \frac{R}{k^{2}-1} \\
& \text { C. } \frac{R}{1-k^{2}} \\
& \text { D. } \frac{R}{k+1}
\end{aligned}
$$

Answer: C

27. Which of the following quantities are always positive in a simple harmonic motion?
A. $\vec{F} \cdot \vec{a}$
B. $\vec{v} \cdot \vec{r}$
C. $\vec{a} \cdot \vec{r}$
D. $\vec{F} \cdot \vec{r}$

Answer: A
28. A body is executing S.H.M. when its
displacement from the mean position is 4 cm and 5 cm , the corresponding velocity of the body is $10 \mathrm{~cm} / \mathrm{sec}$ and $8 \mathrm{~cm} / \mathrm{sec}$. Then the time period of the body is
A. $2 \pi s$
B. $\frac{\pi}{2} s$
C. πs
D. $\frac{3 \pi}{2} s$
29. Consider the equations
$P=\operatorname{Lim}_{\triangle s \rightarrow 0} \frac{F}{\triangle S}$ and $P_{1}-P_{2}=\rho g z$
In an elevator accelerating upward
A. both the equations are valid
B. first is valid but not the second
C. second is valid but not the first
D. both are invalid
30. A water drop is divided into 8 equal droplets. The pressure difference between the inner and outer side of the big drop will be
A. same as for smaller droplet
B. $\frac{1}{2}$ of that for smaller droplet
C. $\frac{1}{4}$ of that for smaller droplet
D. twice that for smaller droplet
31. The moment of inertia of a body depends

upon

A. mass only
B. angular velocity only
C. distribution of particles only
D. mass and distribution of mass about the
axis

Answer: D

- Watch Video Solution

32. The two diagrams show the situation before and after a collision between two spheres A and B of equal radii moving along the same straight line on a smooth horizontal surface. The coefficient of restitution e is before collision after collision

A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution

33. An α - particle after passing through a potential difference of V volts collides with a nucleus. If the atomic number of the nucleus
is Z then the distance of closest approach of α

- particle to the nucleus will be
A. $14.4 \frac{Z}{V} \AA$
B. $14.4 \frac{Z}{V} m$
C. $14.4 \frac{Z}{V} \mathrm{~cm}$
D. all of these

Answer: A

- Watch Video Solution

34. Which of the following series of transitions

in the spectrum of hydrogen atom falls in
visible region?
A. Brackett series
B. Lyman series
C. Balmer series
D. Paschan series

Answer: C

- Watch Video Solution

35. The activity of a sample of a radioactive meterial is A_{1}, at time t_{1}, and A_{2} at time $t_{2}\left(t_{2}>t_{1}\right)$. If its mean life T , then
A. $A_{1} t_{1}=A_{2} t_{2}$
B. $\frac{A_{1}+A_{2}}{t_{2}-t_{1}}=$ constant
C. $A_{2}=A_{1} e^{\frac{t_{1}-t_{2}}{T}}$
D. $A_{2}=A_{1} e^{\left(\frac{t_{1}}{T t_{2}}\right)}$

Answer: C

- Watch Video Solution

36. The rediation emitted when an electron
jumps from $n=3 \rightarrow n=2$ orbit in a hydrogen atom falls on a metal to produce photoelectron. The electron from the metal surface with maximum kinetic energy are made to move perpendicular to a magnetic field of $(1 / 320) T$ in a radius of $10^{-3} \mathrm{~m}$. Find (a) the kinetic energy of the electrons,

Work function of the metal , and
wavelength of radiation.

A. 1.03 eV

B. 1.89 eV
C. 0.86 eV
D. 2.03 eV

Answer: A

- Watch Video Solution

37. When the photons of energy hv fall on a photosensitive metallic surface of work function $h v_{0}$, electrons are emitted are from
jthe surface. The most energetic electron
coming out of the surfece have kinetic energy equal to
A. the kinetic energy of all emitted electrons is $h v_{0}$
B. the kinetic energy of all emitted
electrons is $h\left(v-v_{0}\right)$
C. the kinetic energy of all fastest electrons

$$
\text { is } h\left(h-v_{0}\right)
$$

D. the kinetic energy of all emitted

Answer: C

- Watch Video Solution

38. Input waveforms A and B as shown in Fig-l
are applied to the combination of gates as
shown in Fig-II. Which of the waveforms shown in Fig.(i) to (iv) correctly represents the output waveform?

> Fig-II

Fig-(ii)

Fig-(iii)

Fig-(iv)
A. Fig .(i)
B. Fig (ii)
C. Fig .(iii)
D. Fig .(iv)

Answer: C

- Watch Video Solution

39. To get an output 1 from the circuit shown
in the figure, the input must be

$$
\begin{aligned}
& \text { A. } A=0, B=1, C=0 \\
& \text { B. } A=1, B=0, C=0 \\
& \text { C. } A=1, B=0, C=1 \\
& \text { D. } A=1, B=1, C=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

40. In a transistor, the value of $\alpha=0.9$. Then the value of β is:
A. 1
B. 0.09
C. 0.9
D. 9

Answer: D

D Watch Video Solution
41. A common emitter transistor amplifier has
a current gain of 50 . If the load resistance is
$4 k \Omega$, and input resistance is 500Ω, the voltage gain of amplifier is.
A. 160
B. 200
C. 400
D. none

Answer: C
42. A 90° corner is made from a transparent optical material with a refractive index such
that A cannot see B when he is standing
behind the corner. Minimum value of refractive index is

A. $\sqrt{3}$
B. $\sqrt{2}$
C. $\sqrt{5}$
D. $\sqrt{7}$

Answer: B

D Watch Video Solution

43. A crown glass prism of refracting angle 8°
is combined with a flint glass prism to obtain deviation without dispersion. If the refractive indicates for red and violet rays for the crown
glass are 1.514 and 1.524 and for the flint glass
are 1.645 and 1.665 respectivey, find the angle of flint glass prism and net deviation.
A. 3°
B. 4°
C. 4.5°
D. 5°

Answer: A

D Watch Video Solution
44. An unpolarised beam of intensity I_{0} is incident on a pair of nicols making an angle of 60° with each other. The intensity of light emerging from the pair is
A. I_{0}
B. $\frac{I_{0}}{2}$
C. $\frac{I_{0}}{4}$
D. $\frac{I_{0}}{8}$

Answer: D

D Watch Video Solution
45. A slit of width a is illuminated by white light. For red light $(\lambda=6500 \AA)$, the first minima is obtained at $\theta=30^{\circ}$. Then the value of a will be

A. $3250 \AA$
B. $6.5 \times 10^{-4} \mathrm{~cm}$
C. $1.3 \mu m$
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer: C

- Watch Video Solution

46. A magnet suspended at 30° with magnetic meridian makes an angle of 45° with the horizontal. What shall be the actual value of the angle of dip?
A. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. $\tan ^{-1}(\sqrt{3})$
C. 45°
D. 30°

Answer: A

- Watch Video Solution

47. Equivalent resistance between points $A \& B$
in the given circuit is

A. $\frac{R}{6}$
B. $\frac{R}{3}$
C. $\frac{2 R}{3}$
D. $\frac{5 R}{3}$

Answer: A

D Watch Video Solution

48. In an experiment to measure the internal resistance of a cell by potentiometer, it is found that the balance point is at a length of

2 m when the cell is shunted by a 4Ω
resistance and at 3 m when cell is shunted by
a 8Ω resistance. The internal resistance of cell
is -
A. 12Ω
B. 8Ω
C. 16Ω
D. 1Ω

Answer: B

D Watch Video Solution
49. The flux linked with a coil at any instant ' t '
is given by $\phi=10 t^{2}-50 t+250$

The induced emf at $t=3 s$ is
A. 10 V
B. 190 V
C. -190 V
D. -10 V

Answer: D
50. An electron moves along the line $A B$ with constant velocity V which lies in the same plane as a circular loop of conducting wire, as shown in the figure. What will be the direction of current induced in the loop?

$A e^{-} V \quad B$

A. no current will be induced
B. induced current will be clockwise
C. induced current will be anticlockwise

D. the current will change direction as the

 electron passes by
Answer: D

D Watch Video Solution

51. Eight charges each of value q are placed on
a ring of radius R placed in $x-y$ plane with
origin at centre. A-q charge having mass m is
projected from $z=\infty$ towards the centre of
the ring with velocity v. The velocity of -q
when it reaches the centre of ring is (neglect

gravity)

A. $\sqrt{\frac{8 k q^{2}}{m R}}$
B. $\sqrt{\frac{8 k q^{2}}{m R}+v}$
C. $\sqrt{\frac{16 k q^{2}}{m R}+v^{2}}$
D. $\sqrt{\frac{16 k q^{2}}{m R}+v}$

Answer: C

D Watch Video Solution

52. A condenser of capacitance $10 \mu F$ has been
charged to 100 V . It is now connected to another uncharged condenser in parallel. The common potential becomes 40 V . The capacitance of another condenser is
A. $15 \mu F$
B. $5 \mu F$

C. $10 \mu F$

D. $16 u m F$

Answer: A

D Watch Video Solution

53. If magnetic field is along +z - axis and a potential difference is applied across an ionized gas chamber placed in the $x-y$ plane

(i) Magnetic force on positive ions will act along + y axis
(ii) Magnetic force on electrons will act along
$+y$ axis
A. both (i) and (ii) are correct
B. both (i) and (ii) are wrong
C. only (i) is correct

D. only (ii) is correct

Answer: B

- Watch Video Solution

54. A uniform magnetic field exist in a region which forms an equilateral triangle of side a.

The magnetic field is perpendicular to the plane of the triangle. A charged q enters into this magnetic field perpendicular to a side with speed v. The charge enters from midpoint
and leaves the field from midpoint of other side. Magnetic induction in the triangles is
A. $\frac{m v}{q a}$
B. $\frac{2 m v}{q a}$
C. $\frac{m v}{2 q a}$
D. $\frac{m v}{4 q a}$

Answer: B

D Watch Video Solution

A. very cold
B. colder than the Sun
C. a black hole

D. hotter than the Sun

Answer: D

56. The P - V diagram of a system undergoing
thermodynamic transformation is shown in
figure. The work done on the system in going
from $A \rightarrow B \rightarrow C$ is 50 J and 20 cal heat is
given to the system. The change in internal
energy between A and C is -

A. 34 J
B. 70 J
C. 84 J
D. 134 J

Answer: A

D Watch Video Solution

57. The ratio of work done by an ideal diatomic gas to the heat supplied by the gas in an isobatic process is

5

A. $\frac{5}{7}$
B. $\frac{3}{5}$
C. $\frac{2}{7}$
D. $\frac{5}{3}$

Answer: C

D Watch Video Solution

58. During the melting of a slab of ice at 273 K at atmospheric pressure,
A. positive work is done by ice - water system on the atmosphere
B. positive work is done on the ice - water
system by the atmosphere
C. the internal energy of the ice - water
system decreases
D. the internal energy of the ice - water
system remains same

Answer: B

59. The reading of brass scale at room temperature is L_{1}. Above room temperature reading is L_{2} and below room temperature reading is L_{3}. Then, relation between the readings is
A. $L_{1}>L_{2}>L_{3}$
B. $L_{3}>L_{1}>L_{2}$
C. $L_{2}>L_{3}>L_{1}$
D. $L_{1}=L_{2}=L_{3}$

Answer: B

D Watch Video Solution

60. Thermometer A and B have ice points
marked at 15° and 25° and steam points at
75° and 125° respectively. When thermometer
A measures the temperature of a bath as 60°,
the reading of B for the same bath is
A. 60°
B. 75°
C. 100°
D. 90°

Answer: C

D Watch Video Solution

61. The speed of a wave in a streched string is $20 m s^{-1}$ and its frequency is 50 Hz . Calculate the phase difference in radian between two points situated at a distance of 10 cm on the string.
A. $\frac{\pi}{2}$
B. π
C. $\frac{3 \pi}{2}$
D. 2π

Answer: A

D Watch Video Solution

62. A particle moves along a straight line path.

After some time it comes to rest. The motion
is with constant acceleration whose direction with respect to the direction of velocity is:
A. positive throughout motion
B. negative throughout motion
C. first positive then negative
D. first negative then negative

Answer: B

D Watch Video Solution

63. Ratio of minimum kinetic energies of two
projectiles of same mass is $4: 1$. The ratio of
the maximum height attained by them is also
$4: 1$. The ratio of their ranges would be
A. $16: 1$
B. $4: 1$
C. $8: 1$
D. 2:1

Answer: B
64. Two blocks ' A ' and ' B ' each of mass ' m ' are placed on a smooth horizontal surface. Two
horizontal force F and $2 F$ are applied on the blocks A and B , respectively, as shown in figure . The block A does not slide on block B .

The normal reaction acting between the two blocks is

A. F
B. $\frac{F}{2}$
C. $\frac{F}{\sqrt{3}}$
D. 3 F

Answer: D

D Watch Video Solution

65. A particle of mass $1.0 g$ moving with velocity $v_{1}=3.0 i-2.0 j \quad$ experiences
particle of mass 2.0 g and velocity
$v_{2}=4.0 j-6.0 k$. Find the velocity of the formed particle (both the vector v and its modulus), if the components of the vectors v_{1} and v_{2} are given in the SI units.
A. $\hat{i}+2 \hat{j}-4 \hat{k}$
B. $\hat{i}-2 \hat{j}+4 \hat{k}$
C. $\hat{i}-2 \hat{j}-4 \hat{k}$
D. $\hat{i}+3.33 \hat{j}+4 \hat{k}$

Answer: A
66. From a uniform circular plate of radius R, a
small circular plate of radius $\mathrm{R} / 4$ is cut off as
shown. If O is the centre of the complete plate,
then the x coordinate of the new centre of
mass of the remaining plate will be:

> A. $-\frac{R}{20}$
> B. $-\frac{R}{16}$
> C. $-\frac{R}{15}$
> D. $-\frac{R}{12}$

Answer: A

- Watch Video Solution

67. If the external forces acting on a system
have zero resultant, the centre of mass
A. must not move
B. must not accelerate
C. must move
D. may accelerate

Answer: B

- Watch Video Solution

68. A partical of mass m moving with velocity
$1 m / s$ collides perfectly elastically with
another particle of mass $2 m$. If the incident particle is deflected by 90°. The heavy mass
will make and angle θ with the initial direction
of m equal to:
A. 60°
B. 45°
C. 15°
D. 30°

Answer: D

D Watch Video Solution

69. A stone hanging from a massless string of
length 15 m is projected horizontally with
speed $\sqrt{147} m s^{-1}$ Then the Speed of the
particle, at the point where tension in string equals the weight of particle, is
A. $10 m s^{-1}$
B. $7 m s^{-1}$
C. $12 m s^{-1}$
D. none of these

Answer: B
(Watch Video Solution
70. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is
very small compared to the mass of the earth.
A. the acceleration of S is always directed
towards the centre of the earth
B. The angular momentum of S about the
centre of the earth changes in direction,
but its magnitude remains constant
C. the total mechanical energy of S varies
periodically with time

D. the linear momentum of S remains

 constant in magnitude
Answer: A

D Watch Video Solution

71. A projectile is projectile with velocity $k v_{e}$ in vertically upward direction from the ground into the space (v_{e} is escape velocity and $k<1$). If air resistance is considered to be negligible then the maximum height from the
centre of earth to which it can go, will be : R
=raduis of earth)

$$
\begin{aligned}
& \text { A. } \frac{R}{k^{2}+1} \\
& \text { B. } \frac{R}{k^{2}-1} \\
& \text { C. } \frac{R}{1-k^{2}} \\
& \text { D. } \frac{R}{k+1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

72. Which of the following quantities are always positive in a simple harmonic motion?
A. $\vec{F} \cdot \vec{a}$
B. $\vec{v} \cdot \vec{r}$
C. $\vec{a} \cdot \vec{r}$
D. $\vec{F} \cdot \vec{r}$

Answer: A
(Watch Video Solution
73. A body is executing S.H.M. when its displacement from the mean position is 4 cm and 5 cm , the corresponding velocity of the body is $10 \mathrm{~cm} / \mathrm{sec}$ and $8 \mathrm{~cm} / \mathrm{sec}$. Then the time period of the body is
A. $2 \pi s$
B. $\frac{\pi}{2} s$
C. πs
D. $\frac{3 \pi}{2} s$

Answer: C
74. Consider the equations
$P=\operatorname{Lim}_{\Delta s \rightarrow 0} \frac{F}{\triangle S}$ and $P_{1}-P_{2}=\rho g z$
In an elevator accelerating upward
A. both the equations are valid
B. first is valid but not the second
C. second is valid but not the first
D. both are invalid

Answer: B

- Watch Video Solution

75. A water drop is divided into 8 equal droplets. The pressure difference between the inner and outer side of the big drop will be
A. same as for smaller droplet
B. $\frac{1}{2}$ of that for smaller droplet
C. $\frac{1}{4}$ of that for smaller droplet
D. twice that for smaller droplet

76. Moment of inertia of a body depends upon

A. mass only
B. angular velocity only
C. distribution of particles only
D. mass and distribution of mass about the axis

Watch Video Solution

77. The two diagrams show the situation before and after a collision between two spheres A and B of equal radii moving along the same straight line on a smooth horizontal surface. The coefficient of restitution e is
before collision

A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution
78. An α - particle after passing through a potential difference of V volts collides with a nucleus. If the atomic number of the nucleus
is Z then the distance of closest approach of α

- particle to the nucleus will be
A. $14.4 \frac{Z}{V} \AA$
B. $14.4 \frac{Z}{V} m$
C. $14.4 \frac{Z}{V} \mathrm{~cm}$
D. all of these

Answer: A

- Watch Video Solution

79. Which of the following series fall in the
visible range of electromagnetic spectrum of a
hydrogen atom ?
A. Brackett series
B. Lyman series
C. Balmer series
D. Paschan series

Answer: C

D Watch Video Solution
80. The activity of a sample of a radioactive meterial is A_{1}, at time t_{1}, and A_{2} at time $t_{2}\left(t_{2}>t_{1}\right)$. If its mean life T, then
A. $A_{1} t_{1}=A_{2} t_{2}$
B. $\frac{A_{1}+A_{2}}{t_{2}-t_{1}}=$ constant
C. $A_{2}=A_{1} e^{\frac{t_{1}-t_{2}}{T}}$
D. $A_{2}=A_{1} e^{\left(\frac{t_{1}}{T t_{2}}\right)}$

Answer: C
81. The radiation emitted when an electron
jumps from $n=3 \rightarrow n=2$ orbit in a hydrogen atom falls on a metal to produce photoelectron. The electron from the metal surface with maximum kinetic energy are made to move perpendicular to a magnetic
field of $(1 / 320) T$ in a radius of $10^{-3} \mathrm{~m}$. Find
(a) the kinetic energy of the electrons,

Work function of the metal, and
wavelength of radiation.

A. 1.03 eV

B. 1.89 eV
C. 0.86 eV
D. 2.03 eV

Answer: A

- Watch Video Solution

82. When the photons of energy hv fall on a photosensitive metallic surface of work function $h v_{0}$, electrons are emitted are from
jthe surface. The most energetic electron
coming out of the surfece have kinetic energy equal to
A. the kinetic energy of all emitted electrons is $h v_{0}$
B. the kinetic energy of all emitted
electrons is $h\left(v-v_{0}\right)$
C. the kinetic energy of all fastest electrons

$$
\text { is } h\left(h-v_{0}\right)
$$

D. the kinetic energy of all emitted
electrons is hv

Answer: C

- Watch Video Solution

83. Input waveforms A and B as shown in Fig-l
are applied to the combination of gates as
shown in Fig-II. Which of the waveforms shown
in Fig.(i) to (iv) correctly represents the output
waveform?

> Fig-II

Fig-(ii)

Fig-(iii)

Fig-(iv)
A. Fig .(i)
B. Fig (ii)
C. Fig .(iii)
D. Fig .(iv)

Answer: C

- Watch Video Solution

84. To get an output 1 from the circuit shown
in the figure, the input must be

$$
\begin{aligned}
& \text { A. } A=0, B=1, C=0 \\
& \text { B. } A=1, B=0, C=0 \\
& \text { C. } A=1, B=0, C=1 \\
& \text { D. } A=1, B=1, C=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

85. For a transistor the value of α is 0.9 . β
value is
A. 1
B. 0.09
C. 0.9
D. 9

Answer: D

D Watch Video Solution
86. A common emitter transistor amplifier has
a current gain of 50 . If the load resistance is
$4 k \Omega$, and input resistance is 500Ω, the voltage gain of amplifier is.
A. 160
B. 200
C. 400
D. none

Answer: C
87. A 90° corner is made from a transparent optical material with a refractive index such
that A cannot see B when he is standing
behind the corner. Minimum value of refractive index is

A. $\sqrt{3}$
B. $\sqrt{2}$
C. $\sqrt{5}$
D. $\sqrt{7}$

Answer: B

D Watch Video Solution

88. A crown glass prism of refracting angle 8°
is combined with a flint glass prism to obtain
deviation without dispersion. If the refractive
indicates for red and violet rays for the crown
glass are 1.514 and 1.524 and for the flint glass
are 1.645 and 1.665 respectivey, find the angle of flint glass prism and net deviation.
A. 3°
B. 4°
C. 4.5°
D. 5°

Answer: A

D Watch Video Solution
89. An unpolarised beam of intensity I_{0} is incident on a pair of nicols making an angle of
60° with each other. The intensity of light emerging from the pair is
A. I_{0}
B. $\frac{I_{0}}{2}$
C. $\frac{I_{0}}{4}$
D. $\frac{I_{0}}{8}$

Answer: D

D Watch Video Solution
90. A slit of width a is illuminiated by white
light. The first diffraction minimum for light of
$\lambda=6500 \AA$ is formed at $\theta=30^{\circ}$, then the width (a) of the slit is
A. $3250 \AA$
B. $6.5 \times 10^{-4} \mathrm{~cm}$
C. $1.3 \mu \mathrm{~m}$
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer: C

Watch Video Solution

