©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 47

Physics

1. A magnet is suspended in such a way that it oscillates in the horizontal plane. It makes 20 oscillations per minute at a place where dip
angle is 30° and 15 oscillations minute at a
place where dip angle is 60°. The ratio of total earth's magnetic field at the two places is
A. $3 \sqrt{3}: 8$
B. $16: 9 \sqrt{3}$
C. $4: 9$
D. $2 \sqrt{3}: 9$

Answer: B

D Watch Video Solution
2. In the circuit shown in figure, reading of voltmeter is V_{1} when only S_{1} is closed, reading of voltmeter is V_{2} when only S_{2} is closed, and reading of voltmeter is V_{3} when both S_{1} and S_{2} are closed. Then.

A. $V_{3}>V_{2}>V_{3}$
B. $V_{2}>V_{1}>V_{3}$
C. $V_{3}>V_{1}>V_{2}$
D. $V_{1}>V_{2}>V_{3}$

Answer: B

- Watch Video Solution

3. The length of a potentiometer wire is 1 m and its resistance is $4 \Omega \mathrm{~A}$ current of 5 mA is
flowing in it. An unknown source of emf is
balanced on 40 cm length of this wire, then
find the emf of the source.
A. 20Ω
B. 40Ω
C. 60Ω
D. 80Ω

Answer: C
(Watch Video Solution
4. The magnetic flux through a coil varies with
time as $\phi=5 t^{2}+6 t+9$ The ratio of emf at t
$=3 \mathrm{~s}$ to $\mathrm{t}=0 \mathrm{~s}$ will be
A. $9: 1$
B. 1:6
C. $6: 1$
D. $1: 9$

Answer: C

D Watch Video Solution
5. A wire is bent to form a semicircle of the radius a. The wire rotates about its one end with angular velocity ω. Axis of rotation is perpendicular to the plane of the semicircle . In the space, a uniform magnetic field of induction B exists along the aixs of rotation as shown in the figure . Then -

A. Potential difference between P and Q is
equal to $2 B \omega a^{2}$
B. Potential difference between P and Q is equal to $2 \pi^{2} B \omega a^{2}$
C. P is at higher potential than Q

D. none of these

Answer: A

D Watch Video Solution

6. A body of mass 1 g and carrying a charge $10^{-8} \mathrm{C}$ passes from two points P and $Q . P$ and Q are at electric potentials 600 V and 0 V respectively. The velocity of the body at Q is 20 $c m s^{-1}$. It velocity in $m s^{-1}$ at P is
A. $\sqrt{0.028}$
B. $\sqrt{0.056}$
C. $\sqrt{0.56}$
D. $\sqrt{5.6}$

Answer: A
7. How much positive charge should be given to the earth so as to have the same potential as that of a positively charged sphere of $1 \mu C$ and radius 1 cm . (Radius of earth $=6400 \mathrm{~km}$)
A. 600 C
B. 640 C
C. 340 C
D. 240 C

Answer: B

D Watch Video Solution

8. Figure. shows a conducting loop $A B C D A$
placed in a uniform magnetic field (strength B)
perpendicular to its plane. The part $A B C$ is the
(three-fourth) portion of the square of side
length I. The part ADC is a circular arc of radius
R. The points A and C are connected to a battery which supplies a current I to the circuit. The magnetic force on the loop due to
the field B is

A. zero
B. 2 BII
C. 2BIR
D. $\frac{B I l R}{I+R}$

Answer: B

Watch Video Solution

9. Choose the wrong statements
A. the radius of path of a charged particle moving in a uniform magnetic field is proportional to the momentum of the particle

B. an electron beam is moving towards

east, on which a perpendicular magnetic
field is acting upwards. The beam will be
deflected towards the north direction
C. a positive charge is going straight away
from the observer. The magnetic line of
force produced due to it are in clockwise
direction.
D. while passing through a given place, the path of electron remains straight line. It
can be definitely said that the magnetic
field is not present at that place

Answer: D

- Watch Video Solution

10. During total solar eclipse Fraunhoffer's
lines appear bright because -
A. Moon totally covers both parts of sun
photosphere and chromosphere .
B. Sun light is scattered by moon.
C. Moon blocks the radiations emitted by
chromosphere.
D. Moon blocks the radiations emitted by
photosphere and radiations emitted by
chromosphere reach the earth.

Answer: D

D Watch Video Solution

11. Two moles of an ideal gas are undergone a
cyclic process 1-2-3-1. If net heat exchange in
the process is 300 J, the work done by the gas in the process 2-3 is

A. $-5000 J$
B. 5000 J

C. $-3000 J$

D. none of these

Answer: D

D Watch Video Solution

12. 70 calories of heat required to raise the temperature of 2 moles of an ideal gas at constant pressure from $30^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}$. The amount of heat required (in calories) to raise the temperature of the same gas through the
same range $\left(30^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}\right)$ at constant volume is:
A. 30
B. 50
C. 70
D. 90

Answer: B
(Watch Video Solution
13. Two strings of copper are stretched to the same tension. If their cross-section area are in
the ratio $1: 4$, then the respective wave velocities will be
A. $4: 1$
B. 2:1
C. 1:2
D. 1: 4

Answer: B
14. The temperature of a body on Kelvin scale
is found to be $x \mathrm{~K}$. When it is measured by

Fahrenheit thermometer, it is found to be $x^{\circ} F$, then the value of x is
A. 301.25
B. 574.25
C. 313
D. 40

Answer: B

D Watch Video Solution

15. Which of the following statements is correct for any thermodynamic system
A. The internal energy changes in all
processes
B. Internal energy and entropy are state
functions
C. The change in entropy can never be zero
D. The work done in an adiabatic process is
always zero

Answer: B

D Watch Video Solution

16. A bimetallic strip consists of metals X and Y.

It mounted rigidly at the base as shown. The metal X has a higher coefficient of expansion compared to that for metal Y. When the

bimetallic strip is placed in a cold bath

A. it will bend towards the right
B. it will bend towards the left
C. it will not bend but shrink

D. it will neither bend nor shrink

Answer: B

D Watch Video Solution

17. The average velocity of a body moving with
uniform acceleration after travelling a
distance of 3.06 m is $0.34 \mathrm{~ms}^{-1}$. If the change
in velocity of the body is $0.18 m s^{-1}$ during
this time, its uniform acceleration is .

$$
\text { A. } 0.01 m s^{-2}
$$

B. $0.02 m s^{-2}$
C. $0.03 m s^{-2}$
D. $0.04 m s^{-2}$

Answer: B

- Watch Video Solution

18. The x and y coordinates of a particle at any
time t are given by $x=2 t+4 t^{2}$ and $y=5 t$,
where x and y are in metre and t in second.

The acceleration of the particle at $t=5 \mathrm{~s}$ is
A. $40 m s^{-2}$
B. $20 \mathrm{~ms}^{-2}$
C. $8 m s^{-2}$
D. zero

Answer: C

D Watch Video Solution

19. Three blocks of massage m_{1}, m_{2} and m_{3} are placed on a horizontal frictionless surface.

A force of 40 N pulls the system then calculate

$$
m_{1}=10 \mathrm{~kg}, m_{2}=6 \mathrm{~kg}, m_{3}=4 \mathrm{~kg}
$$

A. 40 N
B. 20 N
C. 10 N
D. 5 N

Answer: B
20. A smooth sphere of mass m is moving on a horizontal plane with a velocity $(3 \hat{i}+\hat{j})$. It collides with smooth a vertical wall which is parallel to the vector \hat{j}. If coefficient of restitution $e=\frac{1}{2}$ then impulse that acts on the sphere is
A. $-\frac{9}{2} m \hat{i}$
B. $\left(-\frac{3}{2} \hat{i}+\hat{j}\right)$
C. $\frac{3}{2} m \hat{j}$
D. $\left(\frac{3}{2} m \hat{j}+\frac{1}{2} m \hat{i}\right)$

- Watch Video Solution

21. Internal forces can change
A. the linear momentum but not the kinetic
energy of the system
B. the kinetic energy but not the linear momentum of the system
C. linear momentum as well as kinetic
energy of the system
D. neither the linear momentum nor the kinetic energy of the system

Answer: B

D Watch Video Solution

22. Three masses $2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg are lying at the corners of an equilateral triangle of side
I. The X coordinate of center of mass is

> A. $\frac{7}{12} l$
> B. $\frac{5}{9} l$
> C. $\frac{7 \sqrt{2}}{9} l$
> D. $\frac{\sqrt{5}}{9} l$

- Watch Video Solution

23. Two blocks of masses 2 kg and 1 kg respectively are tied to the ends of a string which passes over a light frictionless pulley.

The masses are held at rest at the same horizontal level and then released. The distance traversed by centre of mass in 2 s is (

$$
\left.\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

A. 1.42 m
B. 2.22 m
C. 3.12 m

D. 3.33 m

Answer: B

D Watch Video Solution

24. A point on the periphery of a rotating disc
has its acceleration vector making angle of 30° with the velocity. The ratio $\left(a_{c} / a_{t}\left(a_{c}\right.\right.$ "is centripetal acceleration and a_{1} is tangential acceleration ") equals

$$
\text { A. } \sin 30^{\circ}
$$

B. $\cos 30^{\circ}$
C. $\tan 30^{\circ}$
D. none of these

Answer: C

D Watch Video Solution

25. The correct graph representing the variation of total energy $\left(E_{t}\right)$, kinetic energy
$\left(E_{k}\right)$ and potential energy (U) of a satellite with its distance form the centre of earth is

Answer: C

- Watch Video Solution

26. The time period of a satellite of earth is 5
hours. If the separation between the centre of earth and the satellite is increased to 4 times
the previous value, the new time period will become-
A. 40 hr
B. 20 hr

C. 10 hr

D. 8 hr

Answer: A

- Watch Video Solution

27. The displacement of two identical particles
executing $S H M$ are represented by equations
$x_{1}=4 \sin \left(10 t+\frac{\pi}{6}\right) \& x_{2}=5 \cos (\omega t)$
For
what value of ω, energy of both the particles is
same.
A. 16 unit
B. 6 unit
C. 4 unit
D. 8 unit

Answer: D

D Watch Video Solution

28. The amplitude and time period in SHM are
0.8 cm and 0.2 sec respectively. If the initial
phase is $\pi / 2$ radian, then the equation representing SHM is -
A. $y=0.8 \cos 10 \pi t$
B. $y=0.8 \sin \pi t$
C. $y=3 \times 0.8 \sin \pi t$
D. $y=0.8 \sin 10 \pi t$

Answer: A
(Watch Video Solution
29. Equal mass of three liquids are kept in
three identical cuylindrical vessels A, B and C.
the densities are $\rho_{A}, \rho_{B}, \rho_{C}$ with
$\rho_{A}<\rho_{B}<\rho_{C}$. The force on the base will be
A. maximum in vessel A
B. maximum in vessel B
C. maximum in vessel C
D. equal in all the vessels

Answer: D

30. The radii of the two columns is U-tube are r_{1} and $r_{2}\left(>r_{1}\right)$. When a liquid of density ρ
(angle of contact is 0°)) is filled in it, the level different of liquid in two arms is h. The surface tension of liquid is
($g=$ acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{\rho g h r_{1} r_{2}}{2\left(r_{2}-r_{1}\right)} \\
& \text { B. } h \rho g\left(r_{2}-r_{1}\right) \\
& \text { C. } \frac{h \rho g\left(r_{2}-r_{1}\right)}{2}
\end{aligned}
$$

D. $\frac{h \rho g}{2\left(r_{2}-r_{1}\right)}$

Answer: A

- Watch Video Solution

31. Three point masses, each of mass m, are placed at the corners of an equilateral triangle of side L. The moment of inertia of this system about an axis along one side of the triangle is
A. $m l^{2}$
B. $3 m l^{2}$
C. $\frac{3}{4} m l^{2}$
D. $\frac{2}{3} m l^{2}$

Answer: C

D Watch Video Solution

32. A particle strikes elastically with another particle with velocity V after collision its move with half the velocity in the same direction
find the velocity of the second particle if it is
initially at rest

> A. $\frac{3 V}{2}$
> B. $\frac{V}{2}$
> C. V
D. none of these

Answer: A
(Watch Video Solution
33. A 60 W bulb is placed at a distance of 4 m
from you. The bulb is emtting light of wavelength 600 nm uniformly in all directions.

In 0.1 s, how many photons enter your eye if the pupil of the eye is having a diameter of

2 mm ? [take $h c=1240 \mathrm{eV}-n m$]
A. 2.84×10^{12}
B. 2.84×10^{11}
C. 9.37×10^{11}
D. 6.84×10^{11}

Answer: B

D Watch Video Solution

34. The ionization energy of hydrogen atom is
13.6 eV . Hydrogen atoms in the ground state
are excited by electromagnetic radiation of energy 12.1 eV . How many spectral lines will be emitted by the hydrogen atoms
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

35. There are two radioactive substance A and
B. Decay consant of B is two times that of A.
Initially, both have equal number of nuceli.
After n half-lives of A, rates of disintegaration of both are equal. The value of n is.
A. 1
B. 2
C. 4
D. all of these

Answer: A

D Watch Video Solution
36. If the rate of emission of energy from a star is $2.7 \times 10^{36} \mathrm{~J} / \mathrm{sec}$, the rate of loss of mass in the star will be
A. $3 \times 10^{18} \mathrm{~kg} / \mathrm{sec}$
B. $3 \times 10^{19} \mathrm{~kg} / \mathrm{sec}$
C. $3 \times 10^{20} \mathrm{~kg} / \mathrm{sec}$
D. $3 \times 10^{21} \mathrm{~kg} / \mathrm{sec}$

Answer: B

D Watch Video Solution

37. In an experiment tungsten cathode which
has a threshold $2300 \AA$ is irradiated by ultraviolet light of wavelength $1800 \AA$.

Calculate

(i) Maximum energy of emitted photoelectron and
(ii) Work function for tungsten.
(Mention both the results in electron-volts)

Given
Planck's
constant
$h=6.6 \times 10^{-34} J-\mathrm{sec}$,
$1 e V=1.6 \times 10^{-19} J$ and velocity of light
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
A. 1.2 eV
B. 1.5 eV
C. 1.6 eV

D. 1.8 eV

Answer: B

D Watch Video Solution

38. A transistor is used as an amplifier in $C B$ mode with a load resistance of $5 k \Omega$ the current gain of amplifier is 0.98 and the input resistance is 70Ω, the voltage gain and power gain respectively are
A. 70,68.6
B. $80,75.6$
C. 60,66.6
D. 90,96.6

Answer: A

- Watch Video Solution

39. Figure gives a system of logic gates. From
the study of truth table it can be found that no produce a high output (1) at R, we must
have

A. $X=0, Y=1$
B. $X=1, Y=1$
C. $X=1, Y=0$
D. $X=0, Y=0$

Answer: C

- Watch Video Solution

40. For a transistor working as common base amplifier, the emitter current is 0.72 mA . The

Current gain is 0.96 . The collector current is
A. $0.96 \times 0.72 m A$
B. $\frac{0.96}{0.72} m A$
C. $0.96-0.72 m A$
D. $7.2 A-2 \times 0.96 m A$

Answer: A
41. A combination of logic gates has the truth
table below
$\left|\begin{array}{ccc}P & Q & Z \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right|$

Which combination has this table?

C.

D. None of these

Answer: C

D Watch Video Solution

42. A fish looking up through the water sees
the outside world contained in a circular horizon. If the refractive index of water is $4 / 3$ and the fish is 12 cm below the surface, the radius of this circle in cm is

$$
\text { A. } 36 \sqrt{7}
$$

> B. $\frac{36}{\sqrt{7}}$ C. $36 \sqrt{5}$
D. $4 \sqrt{5}$

Answer: B

D Watch Video Solution

43. An image is formed at a distance of 100 cm
from the glass surface with refractive index 1.5,
when a point object is placed in the air at a
distance of 100 cm from the glass surface. The radius of curvature is of the surface is
A. 20 cm
B. 40 cm
C. 30 cm
D. 50 cm

Answer: A
(Watch Video Solution
44. A slit of width a is illuminiated by white light. The first diffraction minimum for light of $\lambda=6500 \AA$ is formed at $\theta=30^{\circ}$, then the width (a) of the slit is
A. $3250 \AA$
B. $6.5 \times 10^{-4} \mathrm{~cm}$
C. $1.3 \mu m$
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer: C
45. Two coherent point sources S_{1} and S_{2} vibrating in phase emit light of wavelength λ.

The separation between the sources is 2λ.

Consider a line passing through S_{2} and perpendicular to line $S_{1} S_{2}$. Find the position of farthest and nearest minima.
S_{1}
2λ
S_{2}
D $\quad P$
A. $\frac{7 \lambda}{12}$
B. $\frac{15 \lambda}{4}$
C. $\frac{\lambda}{2}$
D. $\frac{3 \lambda}{4}$

Answer: A

- Watch Video Solution

