đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 50

Physics

1. A hydrogen atom initially in the ground
state absorbs a photon which excites it to the
$\mathrm{n}=4$ level. Estimate the frequency of the photon.

A. $3.1 \times 10^{15} \mathrm{~Hz}$
B. $3.1 \times 10^{14} \mathrm{~Hz}$
C. $9.7 \times 10^{15} \mathrm{~Hz}$
D. $9.7 \times 10^{14} \mathrm{~Hz}$

Answer: A
(Watch Video Solution

2. A ball of mass 0.12 kg is moving with a speed

$20 \mathrm{~m} / \mathrm{s}$. Calculate the de Broglie wavelength.
(planck constant $h=6.62 \times 10^{-34} \mathrm{~J} . s$)

$$
\begin{aligned}
& \text { A. } 3.5 \times 10^{-34} m \\
& \text { B. } 2.8 \times 10^{-34} m \\
& \text { C. } 1.2 \times 10^{-34} m \\
& \text { D. } 2.1 \times 10^{-34} m
\end{aligned}
$$

Answer: B
3. A small ball of mass m is released from rest
from the position shown. All contact surface
are smooth . The speed of the ball when it reaches its lowest position is

A. $\sqrt{\frac{2 g R}{3}}$
B. $\sqrt{\frac{4 g R}{3}}$
C. $\sqrt{g R}$

D. $\sqrt{2 g R}$

Answer: B

D Watch Video Solution

4. The angle between vectors \vec{A} and \vec{B} is 60° What is the ratio $\vec{A} \cdot \vec{B}$ and $|\vec{A} \times \vec{B}|$

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{\sqrt{3}} \\
& \text { C. } \frac{1}{\sqrt{4}}
\end{aligned}
$$

D. $\frac{1}{\sqrt{5}}$

Answer: B

D Watch Video Solution

5. For a particle moving along circular path,
the radial acceleration a_{x} is proportional to
time t . If a_{t} is the tangential acceleration, then
which of the following will be independent of
time t .
A. at
B. $a_{r} a_{t}$
C. $\frac{a_{r}}{a_{t}}$
D. $a_{r}(a t)^{2}$

Answer: D

D Watch Video Solution

6. A metallic shell has a point charge ' q ' kept inisde its cavity. Which one of the following diagrams correctly represents the electric lines of forces?
A.

D.

Answer: C

D Watch Video Solution
7. An electric bulb rated for 500 W at 100 V is
used in a circuit having a 200 V supply. The
reistance R that must be put in series with
bulb, so that the bulb delivers 500 W is Ω.
A. 18Ω
B. 20Ω
C. 40Ω
D. 700Ω

Answer: B

D Watch Video Solution

8. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii are in the ratio of $4 / 3$ and $2 / 3$, then
the ratio of the current passing through the wires will be
A. 3
B. $8 / 9$
C. 2
D. $1 / 3$

Answer: D

- Watch Video Solution

9. A step-down transformer is used on a 1000 V line to deliver 20 A at 120 V at the secondary coil. If the efficiency of the
transformer is 80% the current drawn from
the line is.
A. $3 A$
B. 30 A
C. $0.3 A$
D. $2.4 A$

Answer: A
(Watch Video Solution
10. A chance of magnitude $1.6 \times 10^{-19} \mathrm{C}$ moving in a circle of radius 5 cm in a uniform magnetic field 0.5 T After applying $E=0.15 \mathrm{Vm}^{-1}$ charge starts moving in a straight line mass of charge will be

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \times 10^{-20} \mathrm{~kg} \\
& \text { B. } \frac{4}{3} \times 10^{-20} \mathrm{~kg} \\
& \text { C. } \frac{6}{3} \times 10^{-20} \mathrm{~kg} \\
& \text { D. } \frac{1}{3} \times 10^{-20} \mathrm{~kg}
\end{aligned}
$$

11. A charge Q is divided into two charge q and

Q-4 The value of q such that the force between
them is maximum is
A. Q
B. $\frac{3 Q}{4}$
C. $\frac{Q}{2}$
D. $\frac{Q}{3}$
12. In the given figure a capacitor of plate are
A is charged upto charge q. The mass of each plate is m_{2}. The lower plate is rigidly fixed. The value of m_{1} if the system remains in
equilibrium is.

B. m_{2}
C. $\frac{q^{2}}{2 A \varepsilon_{0} g}+m_{2}$
D. None of these

Answer: C

D Watch Video Solution

13. A car is standing 200 m behind a bus, which
is also at rest. The two. Start moving at the
same instant but with different forward accelerations. The bus has acceleration
$2 m s^{-2}$ and The car has acceleration $4 m s^{-2}$

The car will catch up will the bus after time :
A. $\sqrt{120} s$
B. 15 s
C. $\sqrt{110} s$
D. $10 \sqrt{2} s$

Answer: D

D Watch Video Solution

14. Two spherical bodies of mass M and $5 M$ \& radii $R \& 2 R$ respectively are released in free space with initial separation between their centres equal to $12 R$. If they attract each other
due to gravitational force only, then the distance covered by the smallar body just before collision is
A. 2.5 R
B. 4.5 R
C. 1.5 R
D. 7.5 R

Answer: D

D Watch Video Solution
15. A mass m is raised from a distance $2 R$ from
the surface of the earth to $3 R$. Work done to do so against gravity will-
A. $\frac{m g R}{10}$
B. $\frac{m g R}{11}$
C. $\frac{m g R}{12}$
D. $\frac{m g R}{14}$

Answer: C

16. Three capacitors each of capacitance
$C=2 \mu F$ are connected with a battery of emf
30 V as shown in the figure. When the switch
S is closed, the heat generated in the circuit will be

A. 0.15 mJ
B. 0.30 mJ
C. 0.10 mJ
D. 0.60 mJ

Answer: B

- Watch Video Solution

17. Two identical objects A and B are at temperatures T_{A} and T_{B}. Respectively. Both objects are placed in a room with perfectly
absorbing walls maintained at a temperature
$T\left(T_{A}>T>T_{B}\right)$. The objects A and B attain
the temperature T eventually. Select the correct statements from the following:
A. A only emits radiations while B only
absorbs it until both attain the temperature T
B. A loses more heat by radiation than it
absorbs, while B absorbs more radiation
than it emits until they attain the temperature T
C. Both A and B only absorb radiation but
do not emit it, until they attain the temperature T .
D. B only emits radiations, while A only absorbs it until both attain the temperature T

Answer: B

D Watch Video Solution

18. The temperature of source of a Carnot engine of efficiency 20% when the heat exhausted is at 240 K is
A. 1200 K
B. 600 K
C. 540 K
D. 300 K

Answer: D

D Watch Video Solution
19. A smooth vertical tube having two different cross sections is open from both the ends but closed by two sliding pistions as shown in Fig. and tied with an inextensible string. One mole of an ideal gas is enclosed between the piston

The difference in cross-sectional areas of the two pistons is given ΔS. The masses of piston are m_{1} and m_{2} for larger and smaller one, respectively. Find the temperature by which tube is raised so that the pistons will be displaced by a distance I. Take atmospheric
pressure equal to P_{0}

A. $T_{2}-T_{1}=\frac{p l \Delta S}{R}$
B. $T_{2}-T_{1}=P l \Delta S$
c. $T_{2}-T_{1}=\frac{p l \Delta S}{l R}$

$$
\text { D. } T_{2}-T_{1}=\frac{R}{p l \Delta S}
$$

Answer: A

D Watch Video Solution

20. If the electric lines of force are shaped like arcs of concentric circles with their centre at point O in a certain section of an electric field,

A. The intensity of the field in this section

should at each point be inversely
proportional to its distance from point

0
B. The intensity of the field in this section
should at each point be inversely proportional to square of its distance
from point 0
C. The intensity of the field in this section
should at each point be inversely

proportional to cube of its distance from

point 0
D. Nothing can be said
21. Two long wires carrying current are kept crossed (not joined at). The locus where magnetic field is zero is -

> A. $I_{1}=\frac{x}{y} I_{2}$
> B. $I_{1}=\frac{y}{x} I_{2}$
> C. $I_{1}=I_{2}$
> D. $I_{1}=-I_{2}$

Answer: A

D Watch Video Solution

22. A body is thrown vertically upwards. Which
one of the following graphs correctly represent the velocity vs time?

Answer: D

23. man wants to swim across a river of which

 200 m along the shortest path. If the speed of river stream is $3 k m h^{-1}$ and speed of swimmer in still water is $5 \mathrm{kmh}^{-1}$, then the time of crossing the river isA. 10 min
B. 15 min
C. 3 min
D. 6 min

Answer: C

D Watch Video Solution

24. The figure below shows an axe which has a massless handle of length L and a blade of mass M and radius R. The man slowly raises
the axe from the horizontal position to the
vertical position by rotating it about its point
B. Find the work done by him on the axe
during the process .

(Initial position)

$$
\begin{aligned}
& \text { A. } M g\left[L+R+\frac{4 R}{3 \pi}\right] \\
& \text { B. } M g\left[\left(-\frac{4 R}{3 \pi}\right)+L\right]
\end{aligned}
$$

C. MgL
D. $M g\left[\frac{4 R}{3 \pi}+L\right]$

Answer: A

- Watch Video Solution

25. A block of mass 1 kg lies on a horizontal
surface in a truck. The coefficient of static
friction between the block and the surface is
0.6. If the acceleration of the truck is $5 \mathrm{~m} / \mathrm{s}^{2}$,
the frictional force acting on the block is. newtons.
A. 5 N
B. 6 N

C. 10 N

D. 15 N

Answer: A

- Watch Video Solution

26. Two radioactive materials X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same number of nuclei,
then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time.
A. $\frac{1}{10 \lambda}$
B. $\frac{1}{11 \lambda}$
C. $\frac{11}{10 \lambda}$
D. $\frac{1}{9 \lambda}$

Answer: D

(Watch Video Solution
27. The atomic mass of ${ }_{7} N^{15}$ is
15.000108 amu and that of ${ }_{.8} O^{16}$ is
15.994915 amu . The minimum energy required
to remove the least tightly bound proton is (
mass of proton is 1.007825 amu)
A. 0.013018 amu
B. 12.13 MeV
C. 13.018 meV
D. 12.13 eV

Answer: B

- Watch Video Solution

28. Time period of a particle executing $S H M$ is 8 sec . At $t=0$ it is at the mean position.

The ratio of the distance covered by the particle in the 1 st second to the $2 n d$ second is:
A. $\frac{1}{\sqrt{2}+1}$
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$

D. $\sqrt{2}+1$

Answer: D

D Watch Video Solution

29. A pendulum has maximum kinetic energy
K_{1} If its length is doubled keeping amplitude
same then maximum kinetic energy becomes
K_{2}. Then relation between K_{1} and K_{2} is

$$
\text { A. } K_{2}=2 K_{1}
$$

B. $K_{1}=2 K_{2}$
C. $K_{2}=K_{1}$
D. $K_{1}=4 K_{2}$

Answer: A

D Watch Video Solution
30. Moving with the same velocity. One of the following has the longest deBroglie
wavelength
A. β - particle
B. α-particle
C. Proton
D. Neutron

Answer: A

D Watch Video Solution
31. According to Einstein's photoelectric equation, the plot of the maximum kinetic energy of the emitted photoelectrons from a
metal versus frequency of the incident radiation gives a straight line whose slope
A. depends on the nature of the metal
used
B. depends on the intensity of the
radiation
C. depends both on the intensity of the
radiation and the metal used
D. is the same for all matals and is independent of the intensity of the

Answer: D

D Watch Video Solution

32. A cubical block of side 0.5 m floats on water with 30% of its volume under water. What is the maximum weight that can be put on the block without fully submerging it under water?
[Take, density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$]
A. 87.5 kg
B. 65.4 kg
C. 30.1 kg
D. 46.3 kg

Answer: A

D Watch Video Solution

33. 32 g of O_{2} is contained in a cubical
container of side 1 m and maintained at a
temperature of $127^{\circ} \mathrm{C}$. The isothermal bulk
modulus of elasticity of the gas is (universal gas constant $=\mathrm{R}$)
A. 127 R
B. 400 R
C. 200 R
D. 560 R

Answer: B
(Watch Video Solution
34. An astronomical telescope has an angular magnification of magnitude 5 for distant object. The separation between the objective and eyepiece is 36 cm and the final image is
formed at infinity. Determine the focal length of objective and eyepiece.
A. 45 cm and -9 cm
B. 50 cm and 10 cm
C. 72 cm and 5 cm
D. 30 cm and 6 cm

Answer: D

D Watch Video Solution

35. A thin rod of 5 cm length is kept along the axis of a concave mirror of 10 cm focal length
such that its image is real and magnified and one end touches the rod. Its magnification will be
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

36. A solid sphere of mass M and radius R is pulled by a force F as shown in figure. If the sphere does not slip over the surface, then
frictional force acting on the sphere is

A. $\frac{2 F}{7}$
B. $\frac{3 F}{7}$
C. $\frac{2 F}{5}$
D. Zero

Answer: B

- Watch Video Solution

37. A uniform semicircular disc of mass ' m ' and radius ' R ' is shown in the figure. Find out its moment of inertia about.
(a) axis ' $A B^{\prime}$ (shown in the figure 0 which passes through geometrical centre and lies in the plane of the disc
(b) axis ' $C D$ ' which passes through its centre of mass and it is perpendicular to the plane of
the disc.

$$
\text { A. } \frac{M R^{2}}{2}-M\left(\frac{2 R}{\pi}\right)^{2}
$$

$$
\text { B. } \frac{M R^{2}}{2}-M\left(\frac{4 R}{\pi}\right)^{2}
$$

$$
\text { c. } \frac{M R^{2}}{2}+M\left(\frac{4 R}{3 \pi}\right)^{2}
$$

$$
\text { D. } \frac{M R^{2}}{2}+M\left(\frac{2 R}{\pi}\right)^{2}
$$

- Watch Video Solution

38. The energy band gap is maximum in
A. metals
B. superconductors
C. insulators
D. semiconductors
39. The output Y of the combination of logic gates shown is equal to

A. A
B. \bar{A}
C. $A+B$
D. $A B$

Answer: A

D Watch Video Solution

40. P - V graph for a cyclic process is shown in
figure. Work done is given by

A. $\pi P_{0} V_{0}$
B. $15 P_{0} V_{0}$
C. $8 P_{0} V_{0}$
D. $2 \pi P_{0} V_{0}$

Answer: D

- Watch Video Solution

41. A resistor of $6 k \Omega$ with tolerance 10% and
another resistance of $4 k \Omega$ with tolerance
10% are connected in series. The tolerance of
the combination is about
A. 10%
B. 20%
C. 30%

D. 40%

Answer: C

D Watch Video Solution

42. A single slit of width 0.1 mm is illuminated by a parallel beam of light of wavelength $6000 \AA$ and diffraction bands are observed on a screen 0.5 m from the slit. The distance of
the third dark band from the central bright band is mm.
A. 9 mm
B. 3 mm
C. 4.5 mm
D. 1.5 mm

Answer: A

D Watch Video Solution
43. In Young's double slit experiment, the distance between slits and the screen is 1.0 m and monochromatic light of 600 nm is beigh
used. A person standing near the slits is
looking at the fringe pattern. When the separation between the slits is varied, the interference pattern disappears for a particular d_{0} between the slits
A. 1 mm
B. 3 mm
C. 2 mm
D. 4 mm

Answer: C
44. A set of 56 tuning forks is arranged in series of increasing frequencies.If each fork gives 4 beats with preceding one and the frequency of the last in twice that of first ,then frequency of the first fork is
A. 110 Hz
B. 220 Hz
C. 224 Hz
D. 448 Hz

Answer: B

D Watch Video Solution

45. A segment of wire vibrates with a
fundamental frequency of 450 Hz under a tension of 9 Kg -wt.Then, tension at which the fundamental frequency of the same wire becomes 900 Hz is
A. $36 \mathrm{~kg}-\mathrm{wt}$
B. $27 \mathrm{~kg}-\mathrm{wt}$

C. $18 \mathrm{~kg}-\mathrm{wt}$

D. $72 \mathrm{~kg}-\mathrm{wt}$

Answer: A
(D) Watch Video Solution

