©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 52

Physics

1. Calculate the ratio of current flowing
through the battery at $\mathrm{t}=0$ and $t=\infty(\mathrm{t}=0$
is the time of closing of the switch)

A. 1
B. 2
C. $\frac{1}{2}$
D. 0

- Watch Video Solution

2. A bar magnet 8 cm long is placed in the magnetic median with the N -pole pointing towards geographical north . Two netural points separated by a distance of 6 cms are obtained on the equatorial axis of the magnet
. If horizontal component of earth's field $=3.2 \times 10^{-5} T$, then pole strength of magnet is
A. 0.5 A m
B. 1 A m
C. 0.25 A m
D. 2 A m

Answer: A

- Watch Video Solution

3. Shown in the figure is an infinite network of resistors each of resistance 1Ω. The effective
resistance in between A and B is

A. Less than 1Ω
B. 1Ω
C. More than 1Ω but less than 3Ω
D. 3Ω

Answer: C

D Watch Video Solution

4. The wire of potentiometer is made of

A. copper
B. steel
C. manganin

D. aluminum

Answer: C
(D) Watch Video Solution
5. In a series $L C R$ circuit the frequency of a $10 \mathrm{~V}, A C$ voltage soure is adjusted in such a
fashion that the reactance of the inductor meausers 15Ω and that of the capacitor 11Ω. If
$R=3 \Omega$, the potentail difference across the
series combination of L and C will be:
A. 8 V
B. 10 V
C. 22 V
D. 52 V

Answer: A

- Watch Video Solution

6. The work required to put the four charges
from infinity to the position shown here is

A. $\frac{0.65 q^{2}}{\pi \varepsilon_{0}}$
$\pi \varepsilon_{0} a$
B. $\frac{-1.0 q^{2}}{\pi \varepsilon_{0} a}$
C. $\frac{\left(1-\frac{1}{2 \sqrt{2}}\right) q^{2}}{\pi \varepsilon_{0} a}$
D. zero

- Watch Video Solution

7. The capacitance of a parallel plate condenser does not depend upon
A. the distance between the plates
B. area of the plates
C. medium between the plates
D. metal of the plates

Answer: D

- Watch Video Solution

8. A stream of electrons is projected horizontally to the right. A straight conductor carrying a current is supported parallel to the electron steam and above it. If the current in
the conductor is from left to right, what will be the effect on the electron stream?
A. the electron stream will be pulled upwards
B. the electron stream will be pulled downwards
C. the electron stream
D. the electron stream will be speeded up
towards the right

Answer: B

9. The magnetic field B due to a current carrying circular loop of radius 12 cm at its centre is $0.5 \times 10^{-4} T$. Find the magnetic field due to this loop at a point on the axis at a distance of 5.0 cm from the centre.
A. $3.5 \times 10^{-9} T$
B. $5.3 \times 10^{-9} T$
C. $9.3 \times 10^{5} T$
D. $3.9 \times 10^{-5} T$
10. A body cools from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ in 5
min . If the temperature of the surrounding is
$20^{\circ} \mathrm{C}$, the temperature of the body after the next 5 min would be
A. $36^{\circ} \mathrm{C}$
B. $35^{\circ} \mathrm{C}$
C. $33.33^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

11. In the diagram, the graph between volume and pressure for a thermodynamical process
in shown. If $U_{A}=0, U_{B}=20 J$ and the energy given from B to C is 30 , then at the stage of C, the internal energy of the system is

A. 50 J
B. 60 J
C. 30 J
D. 10 J

Answer: A

- Watch Video Solution

12. Pressure versus temperature graphs of an
ideal gas are as shown in figure. Choose the
wrong statement

A. density of gas increasing in graph (i)
B. density of gas is decreasing in graph (ii)
C. density of gas is constant in graph (iii)
D. none of these

Answer: D

D Watch Video Solution

13. Value of adiabatic bulk modulus of elasticity of helium at NTP is

$$
\text { A. } 1.01 \times 10^{5} \mathrm{Nm}^{-2}
$$

B. $1.01 \times 10^{-5} \mathrm{Nm}^{-2}$
C. $1.69 \times 10^{5} \mathrm{Nm}^{-2}$
D. $1.69 \times 10^{-5} \mathrm{Nm}^{-2}$

Answer: C

D Watch Video Solution

14. A copper rod and a steel rod maintain a difference in their lengths of 10 cm at all temperature. If their coefficients of expansion
are $1.6 \times 10^{-5} K^{-1}$ and $1.2 \times 10^{-5} K^{-1}$
then length of the copper rod is
A. 40 cm
B. 30 cm
C. 32 cm
D. 24 cm

Answer: B
(Watch Video Solution
15. Steam is passed into 54 gm of water at $30^{\circ} C$ till the temperature of mixture becomes $90^{\circ} C$. If the latent heat of steam is $536 \mathrm{cal} / \mathrm{gm}$, the mass of the mixture will be
A. 80 g
B. 60 g
C. 50 g
D. 24 g

Answer: B
16. A string of length $2 x$ is stretched by $0.1 x$ and the velocity of a transverse wave along it
is v . When it is stretched by 0.4 x , the velocity
of the wave is
A. $\sqrt{\frac{5}{6}} v$
B. $\sqrt{\frac{11}{7}} v$
C. $\sqrt{\frac{32}{7}} v$
D. $\sqrt{\frac{27}{6}} v$

Answer: C

- Watch Video Solution

17. A car starts from rest and moves with
uniform acceleration a on a straight road from
time $t=0$ to $t=T$. After that, a constant deceleration brings it to rest. In this process
the average speed of the car is
A. $\frac{a T}{4}$
B. $\frac{3 a T}{2}$
C. $\frac{a T}{2}$
D. aT

Answer: C

D Watch Video Solution

18. A body is thrown from a point with speed
$50 m s^{-1}$ at an angle 37° with horizontal.
When it has moved a horizontal distance of 80 m then its distance from point of projection is
A. 40 m
B. $40 \sqrt{2} m$
C. $40 \sqrt{5} m$
D. none

Answer: C

D Watch Video Solution
19. A force $F=2 t^{2}$ is applied to the cart initially at rest. The speed of the cart at $t=5 \mathrm{~s}$
is -

10 kg

A. $10 m s^{-1}$

B. $8.33 m s^{-1}$

C. $2 m s^{-1}$
D. zero

Answer: B
20. The coefficient of restitution for a body is $e=\frac{1}{3}$. At what angle the body must be incident on a perfectly hard plane so that the angle between the direction before and after the impact be at right angles:
A. 37°
B. 60°
C. 45°
D. 30°

Answer: D

- Watch Video Solution

21. Two identical blocks each of mass 1 kg are joined together with a compressed spring.

When the system is released the two blocks appear to be moving with unequal speeds in the opposite directions as shown in fig.

Choose the correct statement -
A. it is not possible
B. whatever may be the speed of the blocks
the centre of mass will remain stationary
C. the centre of mass of the system is
moving with a velocity of $2 m s^{-1}$
D. the centre of mass of the system is
moving with a velocity of $1 m s^{-1}$

Answer: D

D Watch Video Solution

22. A stationary pulley carries a rope whose one end supports a ladder with a man and the other end the counterweight of mass M. The man of mass m climbs up a distance l^{\prime} with respect to the ladder and then stops.

Neglecting the mass of the rope and the friction in the pulley axle, find the displacement I of the centre of inertia of this system.

$$
\begin{aligned}
& \text { A. } \frac{m l}{M+m} \\
& \text { B. } \frac{m l}{2 M}
\end{aligned}
$$

C. $\frac{m l}{M+2 m}$
 D. $\frac{m l}{2 M+m}$

Answer: B

D Watch Video Solution

23. A ball of mass in moving with speed u undergoes a head-on elastic collision with a ball of mass $n m$ initially at rest. The fraction of the incident energy transferred to the second ball is
A. $\frac{n}{1+n}$
B. $\frac{n}{(1+n)^{2}}$
C. $\frac{2 n}{(1+n)^{2}}$
D. $\frac{4 n}{(1+n)^{2}}$

Answer: D

- Watch Video Solution

24. The angular position of a line of a disc of radius $\mathrm{r}=6 \mathrm{~cm}$ is given by $\theta=10-5 t+4 t^{2}$
rad, the average angular velocity between 1 and $3 s$ is
A. $\pi \mathrm{rad} s^{-1}$
B. $11 \mathrm{rad} s^{-1}$
C. $22 \mathrm{rad} s^{-1}$
D. $5.5 \mathrm{rad} s^{-1}$

Answer: B
(Watch Video Solution

25. The total energy of a satellite is

A. always positive
B. always negative
C. always zero
D. positive or negative depending upon
radius of orbit

Answer: B
26. A small block of super dense material has
mass $2 \times 10^{24} \mathrm{~kg}$. It is at a height $h \ll R$. It
falls towards the earth.Find its speed when it
is at a height $\frac{h}{2}$
A. $\sqrt{\frac{2 g h}{3}}$
B. $\sqrt{\frac{3 g h}{4}}$
C. $\sqrt{\frac{3 g h}{5}}$
D. $\sqrt{\frac{g h}{2}}$

Answer: B
27. A student says that he had applied a force
$F=-k \sqrt{x}$ on a particle and the particle moved in simple harmonic motion. He refuses
to tell whether k is a constant or not. Assume
that he has worked only with positive x and no
other force acted on the particle
A. as x increase k increase
B. as x increase k decrease
C. as x increase and k remains constant
D. the motion cannot be simple harmonic

Answer: A

- Watch Video Solution

28. A pendulum of length 10 cm is hanged by a
wall making an angle 3° with vertical. It is
swung to position B. Time period of pendulum
will be
A. $\frac{\pi}{5} s$
B. $\frac{2 \pi}{15} s$

C. $\frac{\pi}{6} s$

D. subsequent motion will not be periodic

Answer: B

- Watch Video Solution

29. A simple harmonic oscillator has amplitude

A, angular velocity ω, and mass m . Then, average energy in one time period will be
A. $\frac{1}{2} m \omega^{2} A^{2}$
B. $\frac{1}{4} m \omega^{2} A^{2}$
C. $m \omega^{2} A^{2}$
D. zero

Answer: B

D Watch Video Solution

30. A $20 N$ metal block is suspended by a spring balance. A beaker containing some water is placed on a weighing machine which reads $40 N$. The spring balance is now lowered
so that the block gets immersed in the water.
The spring balance now reads $16 N$. The reading of the weighing machine will be.
A. 36 N
B. 60 N
C. 44 N
D. 56 N

Answer: C

D Watch Video Solution
31. A metal wire of density ρ floats on water surface horozontally. If is NOT to sink in water, then maximum radius of wire is proportional to (where, T=surface tension of water, g=gravitational acceleration)

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 T}{\pi \rho g}} \\
& \text { B. } \sqrt{\frac{4 T}{\pi \rho g}} \\
& \text { C. } \sqrt{\frac{T}{\pi \rho g}} \\
& \text { D. } \sqrt{\frac{T \rho}{\pi g}}
\end{aligned}
$$

Answer: A
32. A spherical shell of radius R is rolling down an incline of inclination θ without slipping.

Find minimum value of coefficient of friction.

A. $\frac{2}{7} \tan \theta$
B. $\frac{2}{5} \tan \theta$
C. $\frac{2}{3} \tan \theta$
D. none of these

Answer: B

D Watch Video Solution

33. Two identical balls A and B are released
from the position shown in Fig. They collide elastically with each other on the horizontal portion. The ratio of heights attained by A
and B after collision is (neglect friction)

A. $1: 4$
B. 2:1
C. $4: 13$
D. $2: 5$

Answer: C
34. The angular momentum of an electron in a
hydrogen atom is proportional to

> A. $\frac{1}{\sqrt{r}}$
> B. $\frac{1}{r}$
> C. \sqrt{r}
> D. r^{2}

Answer: C
35. The radius of electron's second stationary orbit in Bohr's atom is R. The radius of the third orbit will be
A. 3 R
B. 2.25 R
C. 9R
D. $\frac{R}{3}$

Answer: B
36. The ratio of radii of nuclei $\cdot 13 A 1^{27}$ and
$.52 X^{A}$ is $3: 5$. The number of neutrons in the nuclei of X will be
A. 52
B. 73
C. 125
D. 13

Answer: B
37. When a surface 1 cm thick is illuminated with light of wavelength λ, the stopping potential is V_{0}, but when the same surface is illuminated by light of wavelength 3λ, the stopping potential is $\frac{V_{0}}{6}$. Find the threshold wavelength for metallic surface.
A. 4λ
B. 5λ
C. 3λ
D. 2λ

Answer: B

- Watch Video Solution

38. In the circuit shown, the current through
the ideal diode is

A. 75 mA
B. 20 mA
C. 100 mA
D. 25 mA

Answer:

- Watch Video Solution

39. The truth table given below is for :-

$A \quad B \quad Y$
 $0 \quad 0 \quad 1$
 $0 \quad 1 \quad 0$
 100
 $1 \begin{array}{ll}1 & 1\end{array}$

A. $Y=\bar{A} B+\overline{A B}$
B. $Y=\bar{A} \bar{B}+A \bar{B}$
C. $Y=\bar{A} \bar{B}+\overline{A B}$
D. $Y=\bar{A} \bar{B}+A B$

Answer: D
40. If l_{1}, l_{2}, l_{3} are the lengths of the emitter, base and collector of a transistor then
A. $l_{1}=l_{2}=l_{3}$
B. $l_{3}<l_{2}>l_{1}$
C. $l_{3}<l_{2}<l_{1}$
D. $l_{3}>l_{1}>l_{2}$

Answer: D
41. The relation between α and β parameters of current gains for a transistors is given by

$$
\begin{aligned}
& \text { A. } \alpha+\frac{1+\beta}{\beta} \\
& \text { B. } \alpha+\frac{1-\beta}{\beta} \\
& \text { C. } \alpha=\frac{\beta}{1+\beta} \\
& \text { D. } \alpha=\frac{\beta}{1-\beta}
\end{aligned}
$$

Answer: C

- Watch Video Solution

42. If the critical angle for total internal reflection from a medium to vacuum is 30°, the velocity of light in the medium is

> A. $3 \times 10^{8} \mathrm{~ms}^{-1}$
> B. $1.5 \times 10^{8} \mathrm{~ms}^{-1}$
> C. $6 \times 10^{8} \mathrm{~ms}^{-1}$
> D. $\sqrt{3} \times 10^{8} \mathrm{~ms}^{-1}$

Answer: B

- Watch Video Solution

43. Two plane mirrors are kept parallel at 20
cm from each other. A point object O is placed exactly in between them. Calculate distance

A. 80 cm
B. 60 cm

C. 40 cm

D. 10 cm

Answer: A

D Watch Video Solution

44. A beam of light of wavelength 600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance
between the first dark fringes on either side of
the central bright fringe is
A. 1.2 cm
B. 1.2 mm
C. 2.4 cm
D. 2.4 mm

Answer: D
(Watch Video Solution
45. An unpolarised beam of intensity I_{0} is incident on a pair of nicols making an angle of 60° with each other. The intensity of light emerging from the pair is
A. I_{0}
B. $\frac{I_{0}}{2}$
C. $\frac{I_{0}}{4}$
D. $\frac{I_{0}}{8}$

Answer: D

