©゙" doubtnut

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 53

Physics

1. The ratio of the maximum wavelength of the

Lyman series in hydrogen spectrum to the maximum wavelength in the Paschen series is
A. $\frac{3}{105}$
B. $\frac{6}{15}$
C. $\frac{52}{7}$
D. $\frac{7}{108}$

Answer: D

- Watch Video Solution

2. When an electron jumps from a level $n=4$
to $=1$, the momentum of the recoiled hydrogen atom will be
A. $6.8 \times 10^{-27} k G-m s^{-1}$
B. $12.75 \times 10^{-19} k G-m s^{-1}$
C. $136 \times 10^{-19} k G-m s^{-1}$
D. Zero

Answer: A

D Watch Video Solution

3. Block A is hanging from a vertical spring and is at rest. Block B strikes the block A with velocity v and sticks to it. Then the value of v
for which the spring just attains natural

length is

$3 \times 6400900 x$

A. $\sqrt{\frac{60 m g^{2}}{k}}$
B. $\sqrt{\frac{6 m g^{2}}{k}}$
C. $\sqrt{\frac{10 m g^{2}}{k}}$
D. None of these

Answer: B

- Watch Video Solution

4. A bar of mass m and length I is hanging
from point A as shown in the figure. If the
Young's modulus of elasticity of the bar is Y and area of cross - section of the wire is A,
then the increase in its length due to its own
weight will be

A

ШШШШШШШШШШ

B
A. $\frac{m g L}{2 A Y}$
B. $\frac{m g A}{2 L Y}$
C. $\frac{m g}{2 L A Y}$
D. $\frac{2 L Y}{m g A}$

Answer: A

- Watch Video Solution

The magnitude of resistance X in the circuit
shown in the given figure, when no current flows through the 5Ω resistor is
A. 3Ω
B. 6Ω
C. 9Ω
D. 12Ω

Answer: B

- Watch Video Solution

6. If the extension in both the springs
increases from x to x_{0} on flowing current I in
the rod from B to A then, the value of
magnetic field will be -

7. In a region of uniform electric field ofn intencity E , an electron of mass m_{e} is released from rest. The distance travelled by the eloctron in a time t is
A. $\frac{2 m_{e} t^{2}}{e}$
B. $\frac{e E t^{2}}{2 m_{e}}$
c. $\frac{m_{e} \mathrm{gt}^{2}}{e E}$
D. $\frac{2 E t^{2}}{e m_{e}}$

Answer: B

D Watch Video Solution

8. A step-down transformer is used on a 1000 V line to deliver 20 A at 120 V at the secondary coil. If the efficiency of the transformer is 80% the current drawn from the line is.
A. $3 A$
B. 30 A
C. $0.3 A$
D. $2.4 A$

Answer: A

D Watch Video Solution

9. What will be the ratio of temperatures of
sun and moon if the wavelengths of their maximum emission radiations rates are
$140 A^{\circ}$ and $4200 A^{\circ}$ respectively.
A. $1: 30$
B. $30: 1$
C. $42: 14$
D. 14:12

Answer: B

D Watch Video Solution

10. The phase difference between voltage and current in an AC circuit containing a resistor and an inductor in series is ϕ_{1}. When the
inductor is replaced by a capacitor, the phase difference is changed to ϕ_{2}. The phase difference when all the three elements are connected in series with the same AC source will be
A. $\tan ^{-1}\left(\tan \phi_{1}+\tan \phi_{2}\right)$
B. $\tan ^{-1}\left(\tan \phi_{2}-\tan \phi_{1}\right)$
C. $\cos ^{1}\left(\cos \phi_{1}-\cos \phi_{2}\right)$
D. $\cos ^{1}\left(\cos \phi_{2}-\cos \phi_{1}\right)$

Answer: A
11. $O A B C$ is a current carrying square loop an
electron is projected from the center of loop
along its diagonal $A C$ as shown. Unit vector in
the direction of initial acceleration will be

A. \hat{k}
B. $-\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)$
C. $-\hat{k}$
$\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: B

- Watch Video Solution

12. Two projectiles thrown from the same point at angles 60° and 30° with the horizontal attain the same height. The ratio of their initial velocities is
A. 1
B. 2
C. $\sqrt{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: D

- Watch Video Solution

13. The acceleration due to gravity at a height $(1 / 20)^{t h}$ the radius of the earth above earth s surface is $9 m / s^{2}$ Find out its approximate
value at a point at an equal distance below the surface of the earth .
A. 8.5
B. 9.5
C. 9.8
D. 11.5

Answer: B
(Watch Video Solution
14. A radioactive sample at any instant has its
disintegration rate 5000 disintegrations per minute After 5 minutes, the rate is 1250 disintegration per minute. Then , the decay constant (per minute)
A. $0.4 \ln (2)$
B. $0.2 \ln (2)$
C. $0.1 \ln (2)$
D. $0.8 \ln (2)$

Answer: A
15. The temperature of sun is 5500 K and it emits maximum intensity radiation in the yellow region $\left(5.5 \times 10^{-7} m\right)$. The maximum radiation from a furnace occurs at wavelength $11 \times 10^{-7} \mathrm{~m}$ The temperature of furnace is
A. 500 K
B. 1750 K
C. 3750 K

D. 2750 K

Answer: D

D Watch Video Solution

16. The variation of photocurrent with
collector potential for different frequencies of
incident radiation v_{1}, v_{2}, v_{3} is as shown in the
the graph , then

A. $v_{1}=v_{2}=v_{3}$
B. $v_{1}>v_{2}>v_{3}$
C. $v_{1}<v_{2}<v_{3}$
D. $v_{3}=\frac{v_{1}+v_{2}}{2}$

Answer: C

D Watch Video Solution

17. An ideal gas is initially at temperature T and volume V . Its volume is increased by ΔV due to an increase in temperature Δ, pressure remaining constant . The quantity
$\delta=\Delta V / V \Delta T$ varies with temperature as

B. ${\underset{T}{T}}_{\substack{8}}^{c}$
C.

D.

Answer: C

- Watch Video Solution

18. A gas can be taken from A to B via two different processes ACB and DB.

When path ACB is used 60 J of heat flows into the system and 30 J of work done by the system is 10 J , the heat flows into the system in the path ADB is :
A. 100 J
B. 20 J

C. 40 J

D. 80 J

Answer: C

D Watch Video Solution

19. A truck of mass 10 metric ton runs at
$3 m s^{-1}$ along a level track and collides with a
loaded truck of mass 20 metric ton, standing at rest. If the trucks couple together, the common speed after the collision is
A. $1 m s^{-1}$
B. $0.1 m s^{-1}$
C. $0.5 m s^{-1}$
D. $0.3 m s^{-1}$

Answer: A

D Watch Video Solution
20. A thin flexible wire of length L is connected
to two adjacent fixed points and carries a
current I in the clockwise direction, as shown
in the figure. When the system is put in a uniform magnetic field of strength B going into the plane of the paper, the wire takes the shape of a circle. The tension in the wire is :

A. IBL
B. $\frac{I B L}{\pi}$
C. $\frac{I B L}{2 \pi}$
D. $\frac{I B L}{4 \pi}$

Answer: C

- Watch Video Solution

21. A one mole of an ideal gas expands adiabatically at constant pressure such that its temperature $T \propto \frac{1}{\sqrt{V}}$.The value of the adiabatic constant gas is
A. 1.30
B. 1.50
C. 1.67

D. 2.00

Answer: B

D Watch Video Solution

22. A cylindrical conductor of diameter 0.1 mm

carries a current of 90 ma . The current density
(in $\mathrm{A} m^{-2}$) is $(\pi \approx 3)$
A. 1.2×10^{7}
B. 3×10^{6}
C. 6×10^{6}
D. 2.4×10^{7}

Answer: A

D Watch Video Solution

23. In an AC circuit, current is $3 A$ and voltage

210 V and power is 63 W . The power factor is
A. 0.11
B. 0.09

C. 0.08

D. 0.10

Answer: D

D Watch Video Solution

24. The upper half of an inclined plane with
inclination ϕ is perfectly smooth while the
lower half is rough. A body starting from rest at the top will again come to rest at the
bottom if the coefficient of friction for the lower half is given by
A. $\mu=\sin \theta$
B. $\mu=\cot \theta$
C. $\mu=2 \cos \theta$
D. $\mu=2 \tan \theta$

Answer: D

D Watch Video Solution
25. The potential energy for a conservative force system is given by $U=a x^{2}-b x$. Where a and b are constants find out (a) The expression of force (b) Potential energy at equilibrium.
A. $\mathrm{F}=$ constant
B. $F=b x-2 a$
C. $F=b-2 a x$
D. $F=2 a x$

26. Starting with a sample of pure ${ }^{66} \mathrm{Cu}, 7 / 8$

 of it decays into $Z n$ in 15 minute. The corresponding half-life is:A. 10 min
B. 15 min
C. 5 min
D. $7 \frac{1}{2}$

- Watch Video Solution

27. The ends of a rod of length I and mass m are attached to two identical springs as shown in the figure. The rod is free to rotate about its centre O. The rod is depressed slightly at end

A and released . The time period of the oscillation is

A. $2 \pi \sqrt{\frac{m}{2 k}}$
B. $2 \pi \sqrt{2 \frac{m}{k}}$
C. $\pi \sqrt{2 \frac{m}{3 k}}$
D. $\pi \sqrt{3 \frac{m}{2 k}}$

Answer: C

D Watch Video Solution

28. A pendulum is executing simple harmonic motion and its maximum kinetic energy is K_{1}.

If the length of the pendulum is doubled and
it perfoms simple harmonuc motion with the same amplitude as in the first case, its maximum kinetic energy is K_{2} Then:
A. $K_{2}=2 K_{1}$
B. $K_{1}=2 K_{2}$
C. $K_{2}=K_{1}$
D. $K_{1}=4 K_{2}$

Answer: A

D Watch Video Solution
29. A photocell is illuminated by a small bright source places 1 m away when the same source of light is placed $\frac{1}{2} \mathrm{~m}$ away. The number of electron emitted by photocathode would be
A. decrease by a factor of 2
B. increase by a factor of 2
C. decrease by a factor of 4
D. increase by a factor of 4

Answer: D

- Watch Video Solution

30. The magnitude of x and y components of \vec{A} are 7 and 6 respectively. Also, the magnitudes of x and y components of $\vec{A}+\vec{B}$ are 11 and 9 respectively. Calculate the magnitude of vector \vec{B}
A. 10
B. 5
C. 6
D. 3

Answer: B

- Watch Video Solution

31. The work done in blowing a bubble of
volume V is W, then what is the work done in
blowing a soap bubble of volume $2 V$?
A. W
B. $\sqrt{2} W$
C. $\sqrt[2]{2} W$
D. $\sqrt[3]{4} W$

Answer: D

D Watch Video Solution

32. A body is projected at time $t=0$ from a certain point on a planet's surface with a certain velocity at a certain angle with the planet's surface (assumed horizontal). The horizontal and vertical displacement x and y
(in metre) respectively vary with time t in second as, $\quad x=(10 \sqrt{3}) t$ and $y=10 t-t^{2}$.

The maximum height attained by the body is
A. 100 m
B. 75 m
C. 50 m
D. 25 m

Answer: D

D Watch Video Solution

33. A body of mass 8 kg is suspended through
two light springs X and Y connected in series
as shown in figure. The readings is X and Y
respectively are :

A. 8 kg , zero
B. Zero , 8 kg
C. $6 \mathrm{~kg}, 2 \mathrm{~kg}$
D. $8 \mathrm{~kg}, 8 \mathrm{~kg}$

Answer: D

D Watch Video Solution

34. The two surfaces of a biconvex lens has same radii of curvatures. This lens is made of glass of refractive index 1.5 and has a focal length of 10 cm in air. The lens is cut into two
equal halves along a plane perpendicular to its principal axis to yield two plane - convex lenses. The two pieces are glued such that the convex surfaces touch each other. If this combination lens is immersed in water (refractive index $=\frac{4}{3}$), its focal length (in cm) is
A. 5 cm
B. 10 cm
C. 20 cm
D. 40 cm

Answer: D

D Watch Video Solution

35. The displacement of an object attached to
a spring and executing simple harmonic motion is given by $x=2 \times 100^{-2} \cos \pi t$ metre. The time at which the maximum speed first occurs is.
A. 0.25 s
B. 0.75 s
C. 0.125 s
D. 0.5 s

Answer: D

D Watch Video Solution

36. A sphere of mass M rolls without slipping on the inclined plane of inclination θ. What should be the minimum coefficient of friction, so that the sphere rolls down without slipping ?
A. $\mu=\tan \theta$
B. $\mu=\frac{2}{3} \tan \theta$
C. $\mu=\frac{2}{5} \tan \theta$
D. $\mu=\frac{2}{7} \tan \theta$

Answer: D

D Watch Video Solution

37. In the circuit below, A and B represents two inputs and C represents the output. The
circuit represents

A. OR gate
B. NOR gate
C. AND gate
D. NAND gate

Answer: A

Watch Video Solution

38. A ray of light travelling in the direction $\frac{1}{2}(\hat{i}+\sqrt{3} \hat{j})$ is incident on a plane mirror.

After reflectiion, it travels along the direction $\frac{1}{2}(\hat{i}-\sqrt{3} \hat{j})$. The angle of incidence is
A. 45°
B. 75°
C. 30°
D. 60°

Answer: D

D Watch Video Solution

39. A force $\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \hat{k}$ is acting at a point $\vec{r}=2 \hat{i}-6 \hat{j}-12 \hat{k}$. The value of α for which angular momentum about origin is conserved is:
A. 2
B. Zero
C. 1

D. -1

Answer: D

D Watch Video Solution

40. Which of the two have the same dimensions?
A. Force and strain
B. Force and stress
C. Angular velocity and frequency

D. Energy and strain

Answer: C

D Watch Video Solution

41. Pressure of an ideal gas is increased by
keeping temperature constant.What is its effect on kinetic energy of molecules?
A. Increase
B. Decrease

C. No change

D. Can't be determined

Answer: C

D Watch Video Solution

42. A resistor of $10 \mathrm{k} \Omega$ has a tolerance of 10% and another resistor of $20 k \Omega$ has a tolerance of 20%. The tolerance of the series combination is rearly
A. 10%
B. 13%
C. 17%
D. 20%

Answer: C

D Watch Video Solution
43. Fundamental frequency of a sonometer
wire is n . If
the length and diameter of the wire are

doubled

keeping the tension same, then the new
fundamental
frequency is

$$
\begin{aligned}
& \text { A. } \frac{2 n}{\sqrt{2}} \\
& \text { B. } \frac{n}{2 \sqrt{2}} \\
& \text { C. } \sqrt{2} n \\
& \text { D. } \frac{n}{4}
\end{aligned}
$$

Answer: D

44. A tuning fork of frequency 200 Hz is in unison with a sonometer wire. Tension is the wire of sonometer is increased by 1% without any change in its length. Find the number of beats heard in 9 s .
A. 9
B. 3
C. 6
D. 12

D Watch Video Solution

45. Work down by static friction on an object :
A. may be positive
B. must be negative
C. must be zero
D. None of these

Watch Video Solution

