đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 55

Physics

1. A magnetic needle is kept in a non uniform
magnetic field . It experiences
A. a force and a torque
B. a force but not a torque
C. a torque but not a force
D. neither a force nor a torque

Answer: A

D Watch Video Solution
2. The equivalent resistance between the terminal point P and Q is 4Ω in the given circuit, then find out the resistance of R in

A. 7
B. 4
C. 2
D. 5

Answer: A
3. In an experiment to determine the internal resistance of a cell with potentiometer, the balancing length is 165 cm . When a resistance of 5 ohm is joined in parallel with the cell the balancing length is 150 cm . The internal resistance of cell is
A. 5Ω
B. 1.5Ω
C. 1Ω

D. 0.5Ω

Answer: D

- Watch Video Solution

4. In the series $L-C-R$ circuit shown in
the figure, the rms voltage across the resistor and inductor are 400 V and 700 V respectively. If the applied voltage is $E=500 \sqrt{2} \sin (\omega t)$,
then the peak voltage across the capacitor is

A. 1200 V
B. $1200 \sqrt{2} V$
C. 400 V
D. $400 \sqrt{2} V$

Answer: D

5. A solenoid has an inductance of 50 mH and
a resistance of 0.025Ω. If it is connected to a
battery, how long will it take for the current to
reach one half of its final equilibrium value?
A. 1.38 s
B. 1.2 s
C. 6.32 s
D. 0.23 s
6. The linear charge density on upper half of semi-circular section of ring is λ and that at lower half is $-\lambda$. The direction of electric field at centre O of ring is :

A. along $O A$
B. along OB
C. along OC
D. along OD

Answer: C

D Watch Video Solution

7. A point charge is surrounded symmetrically
by six identical charges at distance r as shown
in the figure How much work is done by the
froces of electrostatic repulsion when the
point charge at the centre is removed to
infinity?

A. zero
B. $\frac{8 q^{2}}{4 \pi \varepsilon_{0} r}$
C. $\frac{8 q}{4 \pi \varepsilon_{0} r}$

D. $\frac{64 q^{2}}{4 \pi \varepsilon_{0} r}$

Answer: B

- Watch Video Solution

8. A square loop ABCD, carrying a current I, is
placed near and coplanar with a long straight conductor XY carrying a current I.
A. there is no net force on the loop
B. the loop will be attracted by the conductor only if the current in the loop
flows clockwise
C. the loop will be attracted by the
conductor only if the current in the loop
flows anticlockwise
D. the loop will always be attracted by the
conductor

Answer: B

9. In a cyclotron, if a deuteron can gain an energy of 40 MeV , then a proton can gain an energy of
A. 40 MeV
B. 60 MeV
C. 20 MeV
D. 80 MeV

Answer: D

D Watch Video Solution
10. If Wien's constant $b=0.3 \mathrm{~cm} K$, then the temperature of the Sun having a maximum intensity of radiation at $5000 \AA$ wavelength is
A. 5000 K
B. 6000 K
C. 4000 K
D. 7000 K

Answer: B

Watch Video Solution

11. A thermodynamic system is taken through
the cyclic $P Q R S P$ process. The net work done by the system is

A. 20 J

$$
\text { B. }-20 J
$$

C. 400 J

$$
\text { D. }-374 J
$$

Answer: B

D Watch Video Solution

12. Suppose ideal gas equation follows
$V P^{3}=\operatorname{con} \tan t . \quad$ Initial temperature and
volume of the gas are T and V respectively. If gas expand to 27 V temperature will become
A. T
B. 9 T
C. 27T
D. $\frac{T}{9}$

Answer: B

D Watch Video Solution

13. P - V diagram of cyclic process $A B C D$ is as
shown in figure. Choose the correct

statement

A. $\Delta Q_{A \rightarrow B}$ is negative
B. $\Delta U_{B \rightarrow C}$ is positive
C. $\Delta W_{C A B}$ is negative
D. all of these

Answer: D
14. A clock which keeps correct time at $20^{\circ} \mathrm{C}$
has a pendulum rod made of brass. How many
seconds will it gain or lose per day when

$$
\begin{aligned}
& \text { temperature falls to } 0^{\circ} \mathrm{C} \quad \text { ? } \\
& {\left[\alpha=18 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right]}
\end{aligned}
$$

A. 155.5 s
B. 15.55 s
C. 25.55 s

```
D. 18.55 s
```


Answer: B

D Watch Video Solution

15. A mixture of 250 g of water and 200 g of ice
at $0^{\circ} C$ is kept in a calorimeter which has a water equivalent of 50 g . If 200 g of steam at $100^{\circ} C$ is passed through this mixture, calculate the final temperature and the weight of the contents of the calorimeter.
A. 450 g
B. 622 g
C. 572 g
D. 650 g

Answer: C

- Watch Video Solution

16. The linear density of a vibrating string is
$1.3 \times 10^{-4} \mathrm{~kg} / \mathrm{m} \quad \mathrm{A}$ transverse wave is propagating on the string and is described by
the equation $y=0.021 \sin (x+30 t)$ where x
and y are measured in meter and $\mathrm{t} t$ in second the tension in the string is :-
A. 0.12 N
B. 0.48 N
C. 1.20 N
D. 4.80 N

Answer: A

D Watch Video Solution
17. A particle starts from rest with uniform acceleration a. Its velocity after ' n ' second is ' v '.

The displacement of the body in the last two second is

$$
\begin{aligned}
& \text { A. } \frac{2 v(n+1)}{n} \\
& \text { B. } \frac{v(n+1)}{n} \\
& \text { C. } \frac{v(n-1)}{n} \\
& \text { D. } \frac{2 v(n-1)}{n}
\end{aligned}
$$

Answer: D
18. A ball is projected upwards from the top of a tower with a velocity $50 \mathrm{~ms}^{-1}$ making an angle 30° with the horizontal. The height of tower is 70 m . After how many seconds from the instant of throwing, will the ball reach the ground. $\left(g=10 m s^{-2}\right)$
A. 3 s
B. 5 s
C. 7 s
D. 9 s

Answer: C

- Watch Video Solution

19. In the figure, $m_{A}=2 k g$ and $m_{b}=4 k g$

For what minimum value of F A starts slipping
over B $\left(g=10 m s^{-2}\right)$?

A. 24 N
B. 36 N
C. 12 N
D. 20 N

Answer: B

- Watch Video Solution

20. A parabolic bow1 with its bottom at origin
has the shape $y=\frac{x^{2}}{20}$ where x and y are in metre The maximum height at which a small mass m can be placed on the bowl without
slipping is (coeff of static friction 0.5

A. 2.5 m
B. 1.25 m
C. 1.0 m
D. 4.0 m
21. Which of the following statement is true for collisions-
A. momentum is conserved in elastic collisions but not in inelastic collisions.
B.total kinetic energy is conserved in
elastic collisions but momentum is not
conserved.
C. total kinetic energy is not conserved in
inelastic collisions but momentum is
conserved
D. total kinetic energy and momentum
both are conserved in all types of
collisions.

Answer: C

- Watch Video Solution

22. In the shown figure, if all the surface are smooth and the two masses are allowed to move then center of mass of the system will

move

A. upwards
B. downwards
C. leftwards

D. rightwards

Answer: B

D Watch Video Solution

23. A child is standing at one end of a long trolley moving with a speed v on a smooth horizontal track. If the child starts running towards the other end of the trolley with a speed u, the centre of mass of the system
(trolley + child) will move with a speed :
A. zero
B. $(v+u)$
C. $(v-u)$
D. v

Answer: D

D Watch Video Solution

24. A molecule of mass m moving at a velocity
v impinges elastically on the wall at an angle a
A. the impulsive reaction of the wall is
$2 m v \cos \alpha$
B. the impulsive reaction of the wall is
$2 m v \sin \alpha$
C. the impulsive reaction of the wall is
nonzero
D. given data is insufficient to calculate impulsive reaction of the wall

Answer: B

25.

A hollow vertical cylinder of radius r and
height h has a smooth internal surface. A
small particle is placed in contact with the inner side of the upper rim, at point A, and given a horizontal speed u, tangentical t the
rim. it leaves the lower rim at point B, vertically below A. If n is an integer then

$$
\begin{aligned}
& \text { A. } \frac{h}{2 \pi R} \\
& \text { B. } \frac{v_{0}}{\sqrt{2 g h}} \\
& \text { C. } \frac{2 \pi R}{h} \\
& \text { D. } \frac{v_{0}}{2 \pi R}\left(\sqrt{\frac{2 h}{g}}\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution
26. The acceleration of a body due to the attraction of the earth (radius R) at a distance
$2 R$ form the surface of the earth is
(g=acceleration due to gravity at the surface of the earth)
A. $\frac{g}{9}$
B. $\frac{g}{3}$
C. $\frac{g}{4}$
D. g

Answer: A

- Watch Video Solution

27. Two bodies of mass m_{1} and m_{2} are initially at rest placed infinite distance apart.

They are then allowed to move towards each other under mutual gravitational attaction.

Show that their relative velocity of approach at separation r betweeen them is
$v=\frac{\sqrt{2 G\left(m_{1}+m_{2}\right)}}{r}$
A. $\sqrt{\frac{2 G\left(m_{1}+m_{2}\right)}{r}}$
B. $\sqrt{\frac{2 G m_{1} m_{2}}{\left(m_{1}+m_{2}\right) r}}$
C. $\sqrt{\frac{G\left(m_{1}+m_{2}\right)}{r}}$
D. $\sqrt{\frac{G m_{1} m_{2}}{\left(m_{1}+m_{2}\right) r}}$

Answer: A

- Watch Video Solution

28. A particle moves such that its acceleration
a is given by $a=-b x$, where x is the
displacement from equilibrium positionand is
a constant. The period of oscillation is
A. $2 \pi \sqrt{b}$
B. $\frac{2 \pi}{\sqrt{b}}$
C. $\frac{2 \pi}{b}$
D. $2 \sqrt{\frac{\pi}{b}}$

Answer: B

D Watch Video Solution
29. The displacement of two identical particles
executing SHM are represented by equations.
$x_{1}=4 \sin \left(10 t+\frac{\pi}{6}\right)$ and $x_{2}=5 \cos \varepsilon t$
For what value of epsilon of both the particles
is same?
A. 16 unit
B. 6 unit
C. 4 unit
D. 8 unit
30. A cubical block is floating in a liquid with half of its volume immersed in the liquid. When the whole system accelerates upwards with acceleration of $g / 3$, the fraction of volume immersed in the liquid will be

A. $\frac{1}{2}$
B. $\frac{3}{8}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$

Answer: A

D Watch Video Solution

31. In a capillary tube experiment, a vertical 30 cm long capillary tube is dipped in water. The water rises up to a height of 10 cm due to
capillary action. If this experiment is conducted in a freely falling elevator, the length of te water column becomes
A. 30 cm
B. greater than 10 cm
C. equal to 10 cm
D. less than 10 cm

Answer: D

D Watch Video Solution
32. A square plate is kept in $Y Z$ plane. Then according to perpendicular axis theorem
A. $I_{Z}=I_{X}+I_{Y}$
B. $I_{X}=I_{Y}+I_{Z}$
C. $I_{Y}=I_{X}+I_{Z}$
D. All of the above

Answer: B
33. A shell of mass 20 kg at rest explodes into two fragments whose masses are in the ratio

2:3. The smaller fragment moves with a velocity of $6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the larger fragment is
A. 96 J
B. 216 J
C. 144 J
D. 360 J

Answer: A
34. An electron in H atom makes a transition from $n=3 \rightarrow n=1$. The recoil momentum of the H atom will be
A. $6.45 \times 10^{-27} \mathrm{Ns}$
B. $6.8 \times 10^{-27} N s$
C. $6.45 \times 10^{-24} \mathrm{Ns}$
D. $6.8 \times 10^{-24} \mathrm{Ns}$
35. When an electron revolves around the nucleus, then the ratio of magnetic moment to angular momentum is

$$
\begin{aligned}
& \text { A. } \frac{e}{2 m} \\
& \text { B. } \frac{2 e}{m} \\
& \text { C. } \frac{e}{m} \\
& \text { D. }\left(\frac{e}{m}\right)^{2}
\end{aligned}
$$

36. A radioactive sample at any instant has its
disintegration rate 5000 disintegrations per minute After 5 minutes, the rate is 1250 disintegration per minute. Then, the decay constant (per minute)
A. $0.8 \ln 2$
B. $0.4 \ln 2$
C. $0.2 \ln 2$

D. $0.1 \ln 2$

Answer: B

D Watch Video Solution

37. When a metallic surface of threshold wavelength 4λ is illuminated with light of wavelength λ the stopping potential is V . When the same surface is illuminated by the light of wavelength 2λ Stopping potential is
$\frac{V}{3}$ Threshold wavelength for the metallic surface is
A. $\frac{\lambda}{2}$
B. 2λ
C. $\frac{\lambda}{3}$
D. 4λ

Answer: C
(Watch Video Solution
38. If an electron and a photon propagate in
the form of waves having the same wavelength, it implies that they have the same
A. energy
B. momentum
C. velocity
D. angular momentum

Answer: B
39. For given logic gate truth table is
$\begin{array}{lllll}A & 0 & 0 & 1 & 1\end{array}$
A. $\begin{array}{lllll}B & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}C & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}A & 0 & 0 & 1 & 1\end{array}$
B. $B \begin{array}{lllll}B & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}C & 1 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}A & 0 & 0 & 1 & 1\end{array}$
C. $\begin{array}{llllll}B & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}C & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}A & 0 & 0 & 1 & 1\end{array}$
D. $\begin{array}{lllll}B & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}C & 0 & 1 & 0 & 0\end{array}$

Answer: C

- Watch Video Solution

40. In a transistor
A.emitter is more highly doped than collector
B. collector is more highly doped than
emitter
C. both are equally doped

D. None of these

Answer: A

D Watch Video Solution

41. A transistor is used as an amplifier in $C B$ mode with a load resistance of $5 k \Omega$ the current gain of amplifier is 0.98 and the input resistance is 70Ω, the voltage gain and power gain respectively are
A. 70,68.6
B. $80,75.6$
C. $60,66.6$
D. 90,96.6

Answer: A

D Watch Video Solution

42. A crown glass prism of refracting angle 6°
is to be used for deviation without dispersion with a flint glass of angle of prism α. Given :
for crown glass $\mu_{r}=1.513$ and $\mu_{v}=1.523$,
for flint glass $\mu_{r}=1.645$ and $\mu_{v}=1.665$.

Find α
A. 3°
B. 4°
C. 4.5°
D. 5°

Answer: A
(Watch Video Solution
43. A beam of light consisting of red, green, and blue colors is incident on a right-angled prism. The refractive indices of the material of the prism for the above red, green and blue wavelengths are $1.39,1.44$ and 1.47 , repectively.

The prism will

A. separate red colour from green and blue colours.
B. separate blue colour from red and green colours
C. separate green colour from red and green colours
D. separate all the three colours from one another

Answer: A

D Watch Video Solution
44. A monochromatic plane wave of speed c and wavelength λ is diffracted at a small aperture . The diagram illustrates successive wavefront. After what time will some portion
of the wavefront $X Y$ reach P ?

A. $\frac{3 \lambda}{2 c}$
B. $\frac{2 \lambda}{c}$
c. $\frac{3 \lambda}{c}$

D. $\frac{4 \lambda}{c}$

Answer: C

D Watch Video Solution

45. The contrast in the fringes in any interference pattern depends on:
A. Fringe width
B. wavelength
C. Intensity ratio of the sources

D. Distance between the sources

Answer: C

D Watch Video Solution

