©゙" doubtnut

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 57

Physics

1. If $\tau_{1}, \tau_{2}, \tau_{3}$ and τ_{4} are the magnetic torques
acting on the bar magnet when it is kept at
angles of $30^{\circ}, 60^{\circ}, 90^{\circ}$ and 135°
respectively with the direction of the magnetic
field , then which among then following is correct ?

$$
\begin{aligned}
& \text { A. } \tau_{1}>\tau_{2}>\tau_{3}>\tau_{4} \\
& \text { B. } \tau_{3}>\tau_{1}>\tau_{2}>\tau_{4} \\
& \text { C. } \tau_{4}>\tau_{3}>\tau_{2}>\tau_{1} \\
& \text { D. } \tau_{3}>\tau_{2}>\tau_{4}>\tau_{1}
\end{aligned}
$$

Answer: D

D Watch Video Solution
2. A conductor of resistance 3Ω is stretched uniformly till its length if doubled. The wire is now bent in the form of an equivalent triangle.

The effective resistance between the ends of any side of the triangle in ohm is

$$
\begin{aligned}
& \text { A. } \frac{9}{2} \\
& \text { B. } \frac{8}{3} \\
& \text { C. } 2 \\
& \text { D. } 1
\end{aligned}
$$

3. Correct diagram for the determination of internal resistance of a primary cell by potentiometer
A.
B.
C.
D.
4. In a series L-C-R circuit the voltage across resistance, capacitance and inductance is 10 V each. If the capacitance is short circuited, the voltage across the inductance will be
A. 10 V
B. $10 \sqrt{2} V$
C. $\frac{10}{\sqrt{2}} V$
D. 20 V

Answer: C

- Watch Video Solution

5. Find the steady - state current through L_{1}
in the figure

A. $\frac{V_{0}}{R}$
B. $\frac{V_{0} L_{1}}{R\left(L_{1}+L_{2}\right)}$
C. $\frac{V_{0} L_{2}}{R\left(L_{1}+L_{2}\right)}$
D. none of these

Answer: C

- Watch Video Solution

6. Charges are placed at the vertices of a square as shown in the diagram. If charges at

A and B are interchanged with C and D
respectively, then,

A. only magnitude of electric field will
change at the centre
B. both magnitude and direction of electric
field will change at the centre
C. only direction of electric field at centre will change
D. both magnitude and direction of electric
field will remain unchanged

Answer: C

D Watch Video Solution

7. A particle of mass 2 g and charge $1 \mu C$ is held at rest on a frictionless surface at a distance of 1 m from a fixed charge of 1 mC . If
the particle is released it will be repelled. The speed of the particle when it is at distance of 10 m from fixed charge is :
A. $100 m s^{-1}$
B. $90 \mathrm{~ms}^{-1}$
C. $60 m s^{-1}$
D. $45 m s^{-1}$

Answer: B

D Watch Video Solution
8. A closed loop $P Q R S$ carrying a current is
place in a unifrom magnetic forces on segments $P S, S R$ and $R Q$ are F_{1}, F_{2} and F_{3} respectively and are in the plane of the paper and along the directions shown, the force on the segment $Q P$ is

> A. $\sqrt{\left(F_{3}-F_{1}\right)^{2}-F_{2}^{2}}$
> B. $F_{3}-F_{1}+F_{2}$
> C. $F_{3}-F_{1}-F_{2}$
> D. $\sqrt{\left(F_{3}-F_{1}\right)^{2}+F_{2}^{2}}$

Answer: D

D Watch Video Solution

9. Protons are accelerated in a cyclotron where
the appilied magnetic field is $2 T$ and the P.D across the dees is 100 KV . How many
revolutions the protons has to complete to acquire a K.E. of 20 MeV ?
A. 200
B. 300
C. 150
D. 100

Answer: D
(Watch Video Solution
10. Two slabs A and B of different materials but
of the same thicknesss are joined end to end
to form a composite slab. The thermal conductivities of A and B are K_{1} and K_{2}
respectively. A steady temperature difference
of $12^{\circ} \mathrm{C}$ is maintained across the composite
slab. If $K_{1}=\frac{K_{2}}{2}$, the temperature difference across slabs A is
A. $4^{\circ} C$
B. $8^{\circ} C$
C. $12^{\circ} \mathrm{C}$

D. $16^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

11. An ideal gas is initially at P_{1}, V_{1} is expands
to P_{2}, V_{2} and then compressed adiabatically
to the same volume V_{1} and pressure P_{3}. If W
is the net work done by the gas in complete process which of the following is true.

$$
\text { A. } P_{3}>P_{1} \& W<0
$$

$$
\text { B. } P_{3}<P_{1} \& W>0
$$

C. $P_{3}>P_{1} \& W=0$
D. $P_{3}<P_{1} \& W<0$

Answer: A

D Watch Video Solution

12. A Cycle process $A B C A$ shown in V-T diagram

Fig. is preformed with a constant mass of an ideal gas. Show the same process on a P-V diagram.
A.
B.
C.
D.

Answer: A

D Watch Video Solution

13. Initial pressure and volume of a gas are P and V respectively. First it is expanded isothermally to volume 4 V and then
compressed adiabatically to volume V . The
final pressure of gas will be (given $\gamma=\frac{3}{2}$)
A. 1P
B. 2 P
C. 4 P
D. 8 P

Answer: B

D Watch Video Solution
14. One end of a long mettalic wire of length L
is tied to the ceiling. The other end is tied to massless spring of spring constant K. A mass M hangs freely from the free end of the spring.

The area of cross-section and Young's modulus of the wire are A and Y respectively. If the mass is slightly pulled down and released, it will oscillate with a time period T equal to

$$
\begin{aligned}
& \text { A. } 2 \pi\left(\frac{M}{k}\right)^{1 / 2} \\
& \text { B. } 2 \pi \sqrt{\frac{m(Y A+k L)}{Y A k}}
\end{aligned}
$$

C. $2 \pi\left[\left(\frac{m Y A}{k L}\right)^{1 / 2}\right]$
D. $2 \pi\left[\left(\frac{m L}{Y A}\right)^{1 / 2}\right]$

Answer: B

D Watch Video Solution

15. The temperature of equal masses of three different liquids A, B and C are
$12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when A and B are mixed is $16^{\circ} C$ and when B and C are mixed it is $23^{\circ} \mathrm{C}$. What
should be the temperature when A and C are mixed?
A. $15^{\circ} C$
B. $18.2^{\circ} C$
C. $20.25^{\circ} \mathrm{C}$
D. $24.5^{\circ} \mathrm{C}$

Answer: C
(Watch Video Solution
16. Speed of transverse wave in a string of density $100 \mathrm{~kg} / \mathrm{m}^{3}$ and area of cross-section $10 \mathrm{~mm}^{2}$ under a tension of $10^{3} \mathrm{~N}$ is
A. $100 m s^{-1}$
B. $1000 \mathrm{~ms}^{-1}$
C. $200 m s^{-1}$
D. $2000 \mathrm{~ms}^{-1}$

Answer: B

- Watch Video Solution

17. Check up the only correct statement in the following
A. a body has a constant velocity and still it
can have a varying speed
B. a body has a constant speed but it can
have a varying velocity
C. a body having constant speed cannot
have any acceleration
D. all of the above

Answer: B

D Watch Video Solution

18. A car of mass 1000 kg moves on a circular path with constant speed of $16 \mathrm{~m} / \mathrm{s}$. It is turned by 90 after travelling 628 m on the road. The centripetal force acting on the car is-
A. 160 N
B. 320 N
C. 640 N

D. 1280 N

Answer: C

D Watch Video Solution

19. A particle moves move on the rough
horizontal ground with some initial velocity V_{0}
. If $\frac{3}{4}$ of its kinetic enegry lost due to friction
in time t_{0}. The coefficient of friction between
the particle and the ground is.

$$
\text { A. } \frac{v_{0}}{2 \mathrm{gt}_{0}}
$$

B. $\frac{v_{0}}{4 \mathrm{gt}_{0}}$
C. $\frac{3 v_{0}}{4 \mathrm{gt}_{0}}$
D. $\frac{v_{0}}{\mathrm{gt}_{0}}$

Answer: A

D Watch Video Solution

20. A block of mass 70 kg is kept on a rough
horizontal surface and coefficient of static friction between block and surface is 0.4 . A man is trying to pull the block by applying a
horizontal force .The net contact force exerted by the surface on the block is F, then:
A. F must be 700 N
B. F must be 280 N
C. $700 N \leq F \leq 754 N$
D. F maybe greater than 754 N

Answer: C
(Watch Video Solution
21. A block of mass m is stationary with respect
to the wedge of mass M moving with uniform
speed v on horizontal surface. Work done by friction force on the block in t seconds is

A. zero

$$
\begin{aligned}
& \text { B. } \frac{-m g v t}{2} \sin 2 \theta \\
& \text { C. }-\frac{m g v t}{2} \\
& \text { D. } \frac{-m g v t}{2} \sin ^{2} \theta
\end{aligned}
$$

Answer: B

D Watch Video Solution

22. A square plate of edge d and a circular disc of diameter d are placed touching each other at the midpoint of an edge of the plate as shown in figure. Locate the centre of mass of
the combination assuming same mass per unit area for the two plates.
A. $\frac{2 d}{2+\pi}$ left to the centre of the disc
B. $\frac{2 d}{2+\pi}$ right to the centre of the disc
C. $\frac{4 d}{4+\pi}$ right to the centre of the disc
D. $\frac{4 d}{4+\pi}$ left to the centre of the disc

Answer: C

D Watch Video Solution

23. At $t=0$, the positions and velocities of two particles are as shown in the figure. They are kept on a smooth surface and being mutually attracted by gravitational force. Find the position of centre of mass at $t=2 s$.

A. $X=5 \mathrm{~m}$
B. $\mathrm{X}=7 \mathrm{~m}$

C. $\mathrm{X}=3 \mathrm{~m}$

$$
\text { D. } \mathrm{X}=2 \mathrm{~m}
$$

Answer: B

- Watch Video Solution

24. A nucleus moving with velocity \bar{v} emits an α-particle. Let the velocities of the α-particle and the remaining nucleus be \bar{v}_{1} and \bar{v}_{2} and their masses be m_{1} and $\left(m_{2}\right)$ then,
A. all velocity vectors \vec{v}, \vec{v}_{1} and \vec{v}_{2} must be parallel
B. \vec{v} must be parallel to $\left(\vec{v}_{1}+\vec{v}_{2}\right)$
C. \vec{v} must be parallel to

$$
\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)
$$

D. none of above

Answer: C

D Watch Video Solution

25. A particle moves in a circle of radius 25 cm
at two revolutions per sec. The acceleration of
the particle in m / s^{2} is:
A. π^{2}
B. $8 \pi^{2}$
C. $4 \pi^{2}$
D. $2 \pi^{2}$

Answer: C

- Watch Video Solution

26. If the change in the value of g at a height h
above the surface of the earth is the same as
at a depth x below it, then (both x and h being
much smaller than the radius of the earth)
A. $x=h$
B. $x=2 h$
C. $x=\frac{h}{2}$
D. $x=h^{2}$

Answer: B
27. An artificial satellite moving in circular orbit around the earth has total (kinetic + potential) energy E_{0}. Its potential energy and kinetic energy respectively are :
A. $-E_{0}$
B. $1.5 E_{0}$
C. $2 E_{0}$
D. E_{0}

Answer: C

D Watch Video Solution

28. A particle of mass m is acted upon by a force $F=t^{2}-k x$. Initially, the particle is at rest at the origin. Then
A. its displacement will be in simple
harmonic
B. its velocity will be in simple harmonic
C. its acceleration will be in simple harmonic
D. None of the above

Answer: D

D Watch Video Solution

29. In an experiment, to find the loss of energy
with respect to time in case of swinging
simple pendulum , the graph between
(amplitude) ${ }^{2}$ and time is

Answer: A

D Watch Video Solution
30. A ball falling in a lake of depth 200 m shows a decrease of 0.1% in its volume at the bottom. The bulk modulus of elasticity of the material of the ball is (take $g=10 \mathrm{~ms}^{-2}$)
A. $10^{9} \mathrm{Nm}^{-2}$
B. $2 \times 10^{9} \mathrm{Nm}^{-2}$
C. $3 \times 10^{9} \mathrm{Nm}^{-2}$
D. $4 \times 10^{9} \mathrm{Nm}^{-2}$
31. A capillary glass tube records a rise of

20 cm when dipped in water. When the area of
cross-section of the tube is reduced to half of
the former value, water will rise to a height of
A. 10 cm
B. 20 cm
C. 40 cm
D. 80 cm

Answer: C

- Watch Video Solution

32. The moment of intertia of a disc about an axis passing through its centre and normal to
its plane is \mathbf{I}. The disc is now folded along a diameter such that the two halves are mutually perpendicular. Its moment of inertia about this diameter will now be
B. $\frac{I}{\sqrt{2}}$
C. $\frac{I}{2}$
D. $\frac{I}{4}$

Answer: C

- Watch Video Solution

33. Three identical blocks A, B and C are placed

 on horizontal frictionless surface. The blocks B and C are at rest. But A is approaching towards B with a speed of $10 \mathrm{~ms}^{-1}$

The coefficient of restitution for all collision is
0.5. The speed of the block C just after collision is
A. $5.6 m s^{-1}$
B. $6 m s^{-1}$
C. $8 m s^{-1}$
D. $10 m s^{-1}$

Answer: A
34. A beam of α - particle is incident on a gold
foil. Corresponding to the incident beams A ,
B and C, the emergent beams A^{\prime}, B^{\prime} and C^{\prime}.
The transmission and deflection of α particles through the foil take place such that
A. the number of α - particle in A^{\prime} is maximum and in B^{\prime} minimum
B. the number of α - particle in A^{\prime} is maximum and in C^{\prime} maximum
C. the number of α - particle in A^{\prime} is maximum and in C^{\prime} is the same .
D. the number of α - particle in B^{\prime} is
maximum and in C^{\prime} maximum

Answer: A
(Watch Video Solution
35. According to Bohr's theory, the time averaged magnetic field at the centre (i.e. nucleus) of a hydrogen atom due to the motion of electrons in the $n^{\text {th }}$ orbit is proportional to :
($\mathrm{n}=$ principal quantum number)

> A. $\frac{1}{n^{3}}$
> B. $\frac{1}{n^{5}}$
> C. n^{5}
D. n^{3}

Answer: B

D Watch Video Solution

36. The activity of a radioactive element decreases to one third of the original activity
I_{0} in a period of nine years. After a further lapse of nine years, its activity will be
A. I_{0}
B. $\frac{2}{3} I_{0}$
C. $\frac{I_{0}}{9}$
D. $\frac{I_{0}}{6}$

Answer: C

D Watch Video Solution

37. The stopping potential as a function of the frequency of the incident radiation is plotted
for two different photoelectric surfaces A and
B. The graphs show that work function of A

A. greater than that of B
B. smaller than that of B
C. same as that of B
D. such that no comparison can be done
from given graphs

Answer: B
38. According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is
A.
B.
C.
D.

Answer: C

- Watch Video Solution

39. The following figure shows a logic gate circuit with two inputs A and B output C. The
voltage waveforms of A, B and C are as shown in second figure given below :-

The logic circuit gate is :-
A. OR gate
B. AND gate
C. NAND gate
D. NOR gate

Answer: B

- Watch Video Solution

40. In a common base transistor circuit, the
current gain is 0.98 . On changing the emitter
current by 5.00 mA , the change in collector current is
A. 0.196 mA
B. 2.45 mA
C. 4.9 mA
D. 5.1 mA

Answer: C
(Watch Video Solution
41. A common emitter transistor amplifier has
a current gain of 50 . If the load resistance is
$4 k \Omega$, and input resistance is 500Ω, the voltage gain of amplifier is.
A. 160
B. 200
C. 400
D. none

Answer: C

42. Calculate the dispersive power for crown

 glass from the given data$\mu_{v}=1.523$ and $\mu_{r}=1.5145$.
A. 2°
B. 3°
C. 0.0163°
D. 2.5°

Answer: C
43. The face $A C$ of a prism $A B C$ of refracting angle 30° is silvered. A ray is incident on face

AB at an angle of 45° as shown in figure. The refracted ray undergoes reflection at face AC and retraces its path. The refractive index of the prism is
A. $\sqrt{2}$
B. $\sqrt{\frac{2}{3}}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: A

D Watch Video Solution

44. A beam of light of wave length 600 nm from a distance source fall on a single slit 1mm wide and a resulting. Diffraction pattern is observed on a screen 2 m away. The distance
between the first dark fringes on either side of central bright fringe is
A. 1.2 cm
B. 1.2 mm
C. 2.4 cm
D. 2.4 mm

Answer: D
(Watch Video Solution
45. Two polaroids are placed in the path of unpolarized beam of intensity I_{0} such that no
light is emitted from the second polarid. If a third polaroid whose polarization axis makes an angle θ with the polarization axis of first polaroid, is placed between these two polariods then the intensity of light emerging from the last polaroid will be

$$
\begin{aligned}
& \text { A. }\left(\frac{I_{0}}{8}\right) \sin ^{2}(2 \theta) \\
& \text { B. }\left(\frac{I_{0}}{4}\right) \sin ^{2}(2 \theta) \\
& \text { C. }\left(\frac{I_{0}}{2}\right) \cos ^{4}(\theta)
\end{aligned}
$$

D. $I_{0} \cos ^{4} \theta$

Answer: A

- Watch Video Solution

