©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 60

Physics

1. if the radius of the first Bohr orbit is x, then
find the de Broglie wavelength of electron in
third orbit.
A. $2 \pi x$
B. $6 \pi x$
C. $9 x$
D. $\frac{x}{3}$

Answer: B

D Watch Video Solution

2. Constant the following two statements :
A. Liner momentum of a system of particles is
zero

B . Kinetic energy of a system of particls is zero
.Then
A. I implies II and II implies I
B. I does not imply II and II does not imply I
C. I implies II but II does not imply I

D. I does not imply II but II implies I

Answer: D

D Watch Video Solution

3. A wheel rotating at 12 revs $^{-1}$ is brought to

rest in 6 s . The average angular deceleration
in rad s^{-2} of the wheel during this process is
A. 4π
B. 4
C. 72
D. π

Answer: A

D Watch Video Solution
4. A person travelling on a straight line moves
with a uniform velocity v_{1} for some time and with uniform velocity v_{2} for the next equal time. The average velocity v is given by
A. $\sqrt{v_{1} v_{2}}$
B. $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
C. $\frac{v_{1}+v_{2}}{2}$
D. $\frac{v_{1}-v_{2}}{2}$

Answer: C

5. Which of the following has the maximum

 resistance ?A. Voltmeter
B. Millivoltmeter
C. Ammeter

D. Miliammeter

Answer: A
6. An AC voltage source of variable angular frequency (ω) and fixed amplitude V_{0} is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When (ω) is increased
A. The bulb glows dimmer
B. The bulb glows brighter
C. Total impedance of the circuit is unchanged
D. Total impedance of the circuit increases

Answer: B

D Watch Video Solution

7. A chance Q placed at thee center of a metallic spherical shell with inner and outer radii R_{1} and R_{2} respectively. The normal component of the electric field at any point on
the Gaussian surface with radius between
R_{1} and R_{2} will be
A. Zero
B. $\frac{Q}{4 \pi R_{1}^{2}}$
C. $\frac{Q}{4 \pi R_{2}^{2}}$
D. $\frac{Q}{4 \pi\left(R_{1}-R_{2}\right)^{2}}$

Answer: A

D Watch Video Solution

8. If a satellite is moving around thee earth in an orbit of 5 R radius, here $\mathrm{R}=$ radius of the earth . The minimum kinetic energy required to be provided to the satellite such that it
escapes the gravitational field of the earth is (
M and m are masses of earth and satellite respectively)

$$
\begin{aligned}
& \text { A. } \frac{G M m}{5 R} \\
& \text { B. } \frac{G M m}{15 R} \\
& \text { C. } \frac{G M m}{10 R} \\
& \text { D. } \frac{G M m}{\sqrt{2} R}
\end{aligned}
$$

Answer: C

D Watch Video Solution

9. From Kirchoff's law the ratio of emissive power and absorption power of all bodies-
A. are different
B. is equal to emissive power of black body
at same temperature
C. is equal to emissive power of white body
D. is equal to emissive power of black body
at any temperature

Answer: B

- Watch Video Solution

10. One mole of an ideal monoatomic gas at temperature T_{0} expands slowly according to the law $\frac{p}{V}$ = constant. If the final temperature is $2 T_{0}$, heat supplied to the gas is
A. $2 R T_{0}$
B. $R T_{0}$
C. $\frac{3}{2} R T_{0}$
D. $\frac{1}{2} R T_{0}$

Answer: A

D Watch Video Solution

11. Two particles X and Y having equal charges, after being acceleration through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii R_{1} and R_{2}, respectively. The ratio of the mass of X to that of Y is
A. $\frac{r_{1}}{r_{2}}$
B. $\sqrt{\frac{r_{1}}{r_{2}}}$
C. $\left[\frac{r_{2}}{r_{1}}\right]^{2}$
D. $\left[\frac{r_{1}}{r_{2}}\right]^{2}$

Answer: D

D Watch Video Solution

12. A man of 50 kg is standing at one end on a boat of length 25 m and mass 200 kg .If he starts running and when he reaches the other
end, has a velocity $2 m s^{-1}$ with respect to the boat.The final velocity of the boat is

> A. $\frac{2}{5}$
> B. $\frac{2}{3}$
> C. $\frac{8}{5}$
> D. $\frac{8}{3}$

Answer: A
(Watch Video Solution
13. A 50 kg . girl wearing high heel shoes
balance on a single heel. The heel is circular
with a diameter 1 cm . what is the pressure exerted by the heel on the horizontal floor?
A. $6.24 \times 10^{6} P a$
B. $5.63 \times 10^{7} \mathrm{~Pa}$
C. $4.81 \times 10^{6} \mathrm{~Pa}$
D. $7.19 \times 10^{7} \mathrm{~Pa}$

Answer: A
14. The relation between n_{1} and n_{2} if the behaviour of light ray is as shown in the figure

A. $n_{2}>n_{1}$
B. $n_{1} \gg n_{2}$

$$
\begin{aligned}
& \text { C. } n_{1}>n_{2} \\
& \text { D. } n_{1}=n_{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

15. A rod of mass m and length l is hinged at one of its ends A as shown in figure. A force F is applied at a distance x from A. The acceleration of centre of mass varies with x as

$$
\rightarrow
$$

D.

Answer: B

D Watch Video Solution
16. A motion is described by
$Y=4 e^{x}\left(e^{-(5 t)}\right)$, Where y, x are in meters and t is in second.
A. This represents progressive wave propagating along - x direction with
$5 m s^{-1}$
B. This represents progressive wave
propagating along $+x$ direction with
$5 m s^{-1}$
C. This does not represent progressive
wave.
D. This represents standing wave.

Answer: B

D Watch Video Solution

17. A mass M is lowered with the help of a string by a distance h at a constant acceleration $g / 2$.The work done by the string will be :
A. $\frac{M g h}{2}$
B. $\frac{-M g h}{2}$
C. $\frac{3 M g h}{2}$
D. $\frac{-3 M g h}{2}$

Answer: B

D Watch Video Solution

18. A 500 kg car takes a round turn of radius

50 m with a velocity of $36 \mathrm{~km} / \mathrm{hr}$. The centripetal force is
A. 250 N
B. 750 N
C. 1000 N
D. 1200 N

Answer: C

- Watch Video Solution

19. The displacement -time ($\mathrm{x}-\mathrm{t}$) graph of a body is given as

The corresponding velocity -time (v - t) graph will be
A.

B.

Answer: D

D Watch Video Solution

20. The V - I graph for a wire of copper of
length L and cross -section area A is shown in
the figure below. The slope of the graph will
be

A. Less if the experiment is repeated at a
higher temperature
B. More if wire of silver having the same
dimension is used
C. Doubled if the length of the wire is

doubled

D. Doubled if the length of the wire is
halved

Answer: C

D Watch Video Solution

21. A transformer having efficiency of 90% is
working on 200 V and $3 k W$ power supply. If
the current in the secondary coil is $6 A$, the
voltage across the secondary coil and current in the primary coil respectively are
A. $300 \mathrm{~V}, 15 \mathrm{~A}$
B. $450 \mathrm{~V}, 15 \mathrm{~A}$
C. $450 \mathrm{~V}, 13.5 \mathrm{~A}$
D. $600 \mathrm{~V}, 15 \mathrm{~A}$

Answer: B
(Watch Video Solution
22. Two equally charged small metal balls
placed at a fixed distance experience a force F.

A similar unchanged metal ball after touching one of them is placed at the middle point between the two balls. The force experienced by this ball is
A. $\frac{F}{2}$
B. F
C. 2 F
D. 4 F

Answer: B

D Watch Video Solution

23. Weight of a body of a mass m decreases by
1% when it is raised to height h above the earth's surface. If the body is taken to depth h in a mine, change in its weight is
A. 0.5% decrease
B. 2%, increase
C. 0.5% increase

D. 2\% decrease

Answer: A

D Watch Video Solution

24. Three rods of same dimensions have
thermal conductivities $3 \mathrm{~K}, 2 \mathrm{k}$ and K , with their ends at $100^{\circ} C, 50^{\circ} C$ and $0^{\circ} C$ respectively.

They re arranged as shown in the diagram.

The temperature of the junction J in steady -
state is

A. $\frac{200}{3} .{ }^{\circ} C$
B. $\frac{100}{3} .{ }^{\circ} C$
C. $75^{\circ} \mathrm{C}$
D. $60^{\circ} \mathrm{C}$

Answer: A
25. The cofficient of performance of a refrigerator is 5 . If the temperature inside freezer is $-20^{\circ} C$, the temperature of the surroundings to which it rejects heat is :
A. $41^{\circ} \mathrm{C}$
B. $11^{\circ} \mathrm{C}$
C. $21^{\circ} \mathrm{C}$
D. $31^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

26. A proton is moving perpendicular to a uniform magnetic field of 2.5 tesla with 2 MeV kinetic energy. The force on proton is \qquad N.
(Mass of proton $=1.6 \times 10^{-27} \mathrm{~kg}$, charge of proton $=1.6 \times 10^{-19} \mathrm{C}$)
A. 8×10^{-12}
B. 8×10^{-11}

C. 3×10^{-11}
 $$
\text { D. } 3 \times 10^{-10}
$$

Answer: A

D Watch Video Solution

27. A man can swim with speed $5 m s^{-1}$ in still
river while the river is also flowing speed
$10 \mathrm{~ms}^{-1}$ If the width of the river is 100 m then
minimum possible drift is
A. 100 m
B. 0
C. $100 \sqrt{3} m$
D. $100 \sqrt{2} m$

Answer: C

D Watch Video Solution

28. The quantity, when measured from different inertial reference frames, remains the same, among the following is
A. Force
B. Velocity
C. Displacement
D. Kinetic energy

Answer: D

D Watch Video Solution

29. A vertical spring of force cosntant $100 \mathrm{~N} / \mathrm{m}$ is attached with a hanging mass of

10 kg . Now an external force is applied on the
mass so that the spring is stretched by additional 2 m . The work done by the force F is $\left(g=10 m / s^{2}\right)$

A. 200 J
B. 400 J

C. 450 J

D. 600 J

Answer: A

D Watch Video Solution

30. When a string is divided into three segments of length l_{1}, l_{2} and l_{3} the fundamental frequencies of these three segments are f_{1}, f_{2} and f_{3} respectively. The
original fundamental frequency f of the string is

$$
\begin{aligned}
& \text { A. } \sqrt{v}=\sqrt{v_{1}}+\sqrt{v_{2}}+\sqrt{v_{3}} \\
& \text { B. } v=v_{1}+v_{2}+v_{3} \\
& \text { C. } \frac{1}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}}+\frac{1}{v_{3}} \\
& \text { D. } \frac{1}{\sqrt{v}}=\frac{1}{\sqrt{v_{1}}}+\frac{1}{\sqrt{v_{2}}}+\frac{1}{\sqrt{v_{3}}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

31. If the angle of minimum deviation is of 60°
for an equilateral prism, then the refractive index of the material of the prism is

A. 1.41

B. 1.5
C. 1.6
D. 1.73

Answer: D

- Watch Video Solution

32. A door 1.6 m wide requires a force of 1 N to
be applied at the free and to open or close it.

The force that is required at a point 0.4 m distant from the hinges for opening or closing the door is
A. 1.2 N
B. 2.4 N
C. 3.6 N
D. 4 N

Answer: D
33. The resistance of a germanium junction diode, whose V -I characteristics is shown in the figure , will be $\left(v_{k}=0.3 V\right)$.

A. $5 k \Omega$
B. $0.2 k \Omega$
C. $2.3 k \Omega$

$$
\text { D. }\left(\frac{10}{2.3}\right) k \Omega
$$

Answer: B

D Watch Video Solution

34. If specific heat of a substance is infinite, it means
A. heat is given out
B. heat is taken in

C. no change in temperature whether heat

 is taken in or given outD. all of above

Answer: C

D Watch Video Solution

35. The resistance $R=\frac{V}{I}$, where
$V=(100 \pm 5.0) V$ and $I=(10 \pm 0.2) A$. Find
the percentage error in R.
A. 5.2%
B. 4.8%
C. 7%
D. 3%

Answer: C

D Watch Video Solution

36. The frequency of a light wave in a material is $2 \times 10^{14} \mathrm{~Hz}$ and wavelength is $5000 \AA$. The refractive index of material will be
A. 1.40
B. 1.50
C. 3.00
D. 1.33

Answer: C

D Watch Video Solution

37. Ionization energy of He^{+}ion at minimum energy position is
A. 13.6 eV
B. 27.2 eV
C. 54.4 eV
D. 68.0 eV

Answer: C

D Watch Video Solution

38. A pulse of a wavetrain travels along a stretched string and reaches the fixed end of
the string. It will be reflected back with
A. A phase change of 180° with speed
changed
B. The same phase as the incident pulse with no reversal of velocity
C. A phase change of 180° with no
changed of speed
D. The same phase as the incident pulse but with velocity reversed

Answer: C

39. Select the dimensional formula of $\frac{B^{2}}{2 \mu 0}$
A. $\left[M^{1} L^{1} T^{2}\right]$
B. $\left[M^{-1} L^{1} T^{2}\right]$
C. $\left[M^{-1} L^{-1} T^{-2}\right]$
D. $\left[M^{1} L^{-1} T^{-2}\right]$

Answer: D

40. The position and velocity of a particle executing simple harmonic motion at $\mathrm{t}=0$ are given by 3 cm and $8 \mathrm{cms}^{-1}$ respectively. If the angular frequency of the particle is $2 \mathrm{rad} \mathrm{s}^{-1}$, then the amplitude of oscillation (in cm) is
A. 3
B. 4
C. 5
D. 6
41. An energy source will supply a constant current into the load if its internal resistance is
A. Equal to the resistance of the load
B. Very large as compared to the load
C. Zero
D. Non - zero but less than the resistance

Answer: B

D Watch Video Solution

42. A body is thrown vertically up with certain
initial velocity, the potential and kinetic energies of the body are equal is thrown with double the velocity upwards, the ratio of potential and kinetic energies upwards, the ratio of potential and kinetic energies of the body when it crosses the same point, is
A. $1: 1$
B. 1: 4
C. 1:7
D. $1: 8$

Answer: C

D Watch Video Solution

43. A photon of energy 15 eV collides with
H - atom. Due to this collision, H - atom
gets ionized. The maximum kinetic energy of emitted elecrtron is:
A. 1.4 eV
B. 5 eV
C. 15 eV
D. 13.6 eV

Answer: A
(Watch Video Solution
44. A wire of resistance 18Ω is divided into
three equal parts. These parts are connected as sides of a triangle , the equivalent resistance of any two corners of the triangle will be
A. 18Ω
B. 9Ω
C. 6Ω
D. 4Ω

Answer: D
45. If 150 J of energy is incident on area $2 m^{2}$. If
$Q_{r}=15 \mathrm{~J}$, coefficient of absorption is 0.6 , then amount of energy transmitted is
A. 50 J
B. 45 J
C. 40 J
D. 30 J

Watch Video Solution

