©゙’ doubtnut

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 61

Physics

1. The ratio of minimum to maximum wavelength in Balmer series is
A. $5: 9$
B. $5: 36$
C. 1: 4
D. 3:4

Answer: A

(D) Watch Video Solution

2. Two particles of mass m and $2 m$ have their position vectors as a function of time as $r_{1}(t)=\hat{i}-t^{3} \hat{j}+2 t^{2} \hat{k}$ and $r_{2}(t)=t \hat{i}-t^{3} \hat{j}-t^{2} \hat{k}$ respectively (where t is the time). Which one of
the following graphs represents the path of the centre of mass ?
A.

B.

C.

D.

3. A particle of mass m rotates in a circle of radius a with uniform angular speed ω_{0}. It is viewed from a frame rotating about the z -axis with a uniform angualr speed ω. The centrifugal force on the particle is
A. $m \omega^{2} a$
B. $m \omega_{0}^{2} a$
C. $m\left(\frac{\omega+\omega_{0}}{2}\right)^{2} a$
D. $m \omega \omega_{0}$

Answer: A

D Watch Video Solution

4. The velocity-time graph of a particle moving along a straight line is shown is Fig. The rate of acceleration and deceleration is constant and it is equal to $5 m s^{-2}$. If the a average velocity during the motion is $20 \mathrm{~ms}^{-1}$, Then

The maximum velocity of the particle is .
A. $20 m s^{-1}$
B. $25 m s^{-1}$
C. $30 m s^{-1}$
D. $40 \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

5. If a wire of resistance R is melted and recasted in to half of its length, then the new resistance of the wire will be
A. $\frac{R}{2}$
B. R
C. 2 R
D. $\frac{R}{4}$

Answer: D

D Watch Video Solution

6. The conducting circular loops of radii
R_{1} and R_{2} are placed in the same plane with
their centres coinciding. If $R_{1} \gg R_{2}$, the
mutual inductance M between them will be directly proportional to
A. $\frac{R_{1}}{R_{2}}$
B. $\frac{R_{2}}{R_{1}}$
C. $\frac{R_{1}^{2}}{R_{2}}$
D. $\frac{R_{2}^{2}}{R_{1}}$

Answer: D
(D) Watch Video Solution
7. The magnitude and direction of the electric field at point P can be best represented by

A. $\frac{3 k q}{x^{2}}(\hat{i}+\hat{j})$
B. $\frac{\sqrt{2} k q}{x^{2}}(\hat{i}+\hat{j})$
C. $\frac{3 \sqrt{2} k q}{x^{2}}(-\hat{i}-\hat{j})$

$$
\text { D. } \frac{3 \sqrt{2} k q}{x^{2}}(\hat{i}+\hat{j})
$$

Answer: D

D Watch Video Solution

8. Two balls of radius r each are placed at a distance R and released. The speed of each ball when they collide

$$
--\bigodot_{\mathrm{R}}^{\mathrm{m}}-\underbrace{\mathrm{m}}-
$$

$$
\text { A. } v=\sqrt{2-G m\left(\frac{1}{R}+\frac{1}{r}\right)}
$$

> B. $v=\sqrt{-G m\left(\frac{1}{R}-\frac{1}{2 r}\right)}$ C. $v=\sqrt{-2 G m\left(\frac{1}{R}+\frac{1}{2 r}\right)}$ D. $v=\sqrt{-G m\left(\frac{1}{2 R}+\frac{1}{2 r}\right)}$

Answer: B

D Watch Video Solution

9. A black body of temperature T is inside a chamber of temperature T_{0} Now the closed chamber is slightly opened to Sun that
temeperature of black body (T) and chamber
$\left(T_{0}\right)$ remain constant .
A. Block body will absorb more radiation
B. Block body will absorb less radiation
C. Block body will emit more energy
D. Block body will emit energy equal to energy absorbed by it

Answer: D

Watch Video Solution

10. For the adiabatic expansion of a perfect monoatomic gas, when volume increases by 24%
, what is the percentage decrease in pressure ?
Given : $\left(\frac{25}{31}\right)^{5 / 3}=0.7$
A. 24%
B. 40%
C. 48%
D. 71%

Answer: B
11. A charged particle moving in a uniform magnetic field penetrates a layer of lead and there by loses one-half of its kinetic energy. How does the radius of curvature of its path change?
A. The radius reduces to $r \sqrt{2}$
B. The radius reduces to $\frac{r}{\sqrt{2}}$
C. The radius remains the same
D. The radius becomes $r / 2$

Answer: B
12. A boat which has a speed of $5 k m / h r$ in steel water crosses a river of width 1 km along the shortest possible path in 15 minutes. The velocity of the river water in $k m / h r$ is
A. 3
B. 4
C. $\sqrt{21}$
D. 1
13. A cyclist turns around a curve at 15 miles/hour. If he turns at double the speed, the tendency to overturn is
A. Doubled
B. Quadrupled
C. Halved
D. Unchanged

Answer: B
14. If a simple pendulum oscillates with an amplitude of 50 mm and time period of 2 sec , then its maximum velocity is
A. $0.10 m s^{-1}$
B. $0.15 m s^{-1}$
C. $0.8 m s^{-1}$
D. $0.26 m s^{-1}$

Answer: B
15. In photoelectric emission process from a metal of work function 1.8 eV , the kinetic energy of most energetic electrons is 0.5 eV . The corresponding stopping potential is
A. 1.8 V
B. 1.3 V
C. 0.5 V
D. 2.3 V

D Watch Video Solution

16. The $S I$ unit of the coefficent of viscosity is
A. $\mathrm{N} \mathrm{s} \mathrm{m}^{-2}$
B. $\mathrm{N} \mathrm{s}^{-1} m^{2}$
C. $\mathrm{N} \mathrm{s} \mathrm{m}^{-3}$
D. $\mathrm{N} \mathrm{s}^{-2} m$

Answer: A
17. A ray of light travelling in the direction $\frac{1}{2}(\hat{i}+\sqrt{3} \hat{j})$ is incident on a plane mirror. After reflection, it travels along the direction $\frac{1}{2}(\hat{i}-\sqrt{3} \hat{j})$. The angle of incidence is
A. 45°
B. 75°
C. 30°
D. 60°

Answer: C

18. A cylinder is rolling down on a inclined plane

 of inclination 60°. What is iths acceleration?A. $\frac{g}{3}$
B. g
C. $\frac{g}{2}$
D. $\frac{2 g}{3}$

Answer: A
19. A transistor is used as a common emitter amplifier with a load resistance of $2 k \Omega$. The input resistance is 150Ω. Base current is
changed by $20 \mu A$ which results in change in collector current by 1.5 mA . The voltage gain of the amplifier is
A. 900
B. 1000
C. 1100
D. 1200
20. A point near the equator has: (H and V are horizontal and vertical components of Earth's magnetic field at a point)

$$
\text { A. } H \gg V
$$

B. $V=H \neq 0$
C. $V \gg H$
D. $V=H=0$

- Watch Video Solution

21. The dimensional formula $\mu_{0} \varepsilon_{0}$ is
A. $M^{0} L^{-2} T^{2}$
B. $M^{0} L^{2} T^{-2}$
C. $M^{0} L^{1} T^{-1}$
D. $M^{0} L^{-1} T^{1}$

Answer: A
22. For an interference pattern, the maximum and minimum intensity ratio is $64: 1$, then what will be the ratio of amplitudes ?
A. 8:1
B. 9:7
C. 1:8
D. $7: 9$

Answer: B

D Watch Video Solution
23. A transverse wave is described by the equation $y=A \sin 2 \pi\left(v t-\frac{x}{\lambda}\right)$. The maximum particle velocity is equal to four times the wave velocity if
A. $\lambda=\frac{\pi y_{0}}{4}$
B. $\lambda=2 \pi y_{0}$
C. $\lambda=\frac{\pi}{y_{0}}$
D. $\lambda=\frac{\pi y_{0}}{2}$

Answer: D

24. A body of mass 10 kg is moving on a horizonal surface be applying a force of 10 N in the forward direction. The body moves with a constant velocity of $0.2 \mathrm{~ms}^{-1}$. Work done by the force of friction in the first 10 seconds is
A. $-20 J$
B. 10 J
C. 20 J
D. $-5 J$

Answer: A
25. The acceleration of electron in the first orbits of hydrogen atom is
A. $\frac{4 \pi^{2} m}{h^{3}}$
B. $\frac{h^{2}}{4 \pi^{2} m r}$
C. $\frac{h^{2}}{4 \pi^{2} m^{2} r^{3}}$
D. $\frac{m^{2} h^{2}}{4 \pi^{2} r^{3}}$

Answer: C
26. A bullet of mass m leaves a gun of mass M kept on a smooth horizontal surface. If the speed of the bullet relative to the gun is v, the magnitude of recoil speed of the gun will be
A. $\frac{m}{M} v$
B. $\frac{m}{M+m} v$
C. $\frac{m}{M-m} v$
D. $\frac{M}{m} v$

Answer: B
27. A chain of 125 links is 1.25 m long and has mass of 2 kg with the ends fastened together. It is set for rotating at 50 revolutions per second.

The centripetal force on each link is
A. 3.14 N
B. 0.314 N
C. 314 N
D. None of these
28. A ball is dropped from a certain height on a horizontal floor. The coefficient of restitution between the ball and the floor is $\frac{1}{2}$. The displacement time graph of the ball will be.
A.

B.

c.

Answer: C

D Watch Video Solution

29. Resistors of 1, 2, 3 ohm are connected in the form of a triangle. If a 1.5 V cell of negligible internal resistance is connected across 3 ohm resistor, the current flowing through this resistance will be
A. 0.25 A
B. 0.5 A
C. 1.0 A
D. 1.5 A

Answer: B

D Watch Video Solution

30. The current in self -inductance $L=40 \mathrm{mH}$ is
to be be increased uniformly from 1 A to 11 A is 4
millisecond. The emf induce in inductor during the process is
A. 100 V
B. 0.4 V
C. 440 V
D. 40 V

Answer: A

- Watch Video Solution

31. Charges are placed at the vertices of a square as shown in the diagram. If charges at A and B are interchanged with C and D respectively then,

A. Only magnitude of electric field will change
at the centre
B. Both magnitude and direction of electric
field will change at the centre
C. Only direction of electric field at centre will
change
D. Both magnitude and direction of electric
field will remain unchanged

Answer: C
32. Two particles of same mass m go around a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is ,

$$
\begin{aligned}
& \text { A. } V=\frac{1}{2 R} \sqrt{\frac{1}{G m}} \\
& \text { B. } V=\sqrt{\frac{G M}{2 R}} \\
& \text { C. } V=\frac{1}{2} \sqrt{\frac{G m}{R}} \\
& \text { D. } V=\sqrt{\frac{4 G m}{R}}
\end{aligned}
$$

Answer: C
33. Following graphs shows the variation in the intensity of heat radiations by the the black body and frequency at a fixed temperature . Choose the correct option.
C.

D.

Answer: C

D Watch Video Solution

34. For a gas $\frac{R}{C_{V}}=0.4$, where R is the universal gas constant and C, is molar specific heat at constant volume. The gas is made up of molecules which are
A. rigid diatomic

B. monoatomic

C. non - rigid diatomic

D. polyatomic

Answer: A

D Watch Video Solution

35. Magnetic field at the center (at nucleus) of
the hydrogen like atom (atomic number $=z$)
due to the motion of electron in nth orbit is proporional to

> A. $\frac{n^{3}}{Z^{5}}$
> B. $\frac{n^{4}}{Z}$
> C. $\frac{Z^{2}}{n^{3}}$
> D. $\frac{Z^{3}}{n^{5}}$

Answer: D

D Watch Video Solution

36. Two bodies are projected at angle θ and ($90-\theta)$ to the horizontal with the same speed. Find the ration of their time of flight.
A. $\sin \theta: 1$
B. $\cos \theta: 1$
C. $\sin \theta-\cos \theta$
D. $\cos \theta: \sin \theta$

Answer: C

D Watch Video Solution

37. Three identical blocks each of mass M are
along a frictionless table and a force F is acting as shown. Which of the following statements is

false?

A. Th net vertical force on block A is zero
B. The net force on block A is $\frac{F}{3}$
C. The acceleration of block C is $\frac{F}{3 M}$
D. The force of interaction between A and B is
$\frac{F}{3}$

Answer: D
38. Time period of pendulum, on a satellite orbiting the earth, is
A. Zero
B. T
C. Infinite
D. $\frac{T}{\sqrt{6}}$

Answer: C

- Watch Video Solution

39. Sodium and copper have work functions
2.3 eV and 4.5 eV respectively. Then the ratio of the wavelength is nearest
A. $1: 2$
B. $4: 1$
C. 2:1
D. 1: 4

Answer: C
(D) Watch Video Solution
40. When one end of the capillary is dipped in water, the height of water column is ' h '. The upward force of 105 dyne due to surface tension is balanced by the force due to the weight of water column . The inner circumference of the capillary is
(Surface tension of water $=7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$)
A. 1.5 cm
B. 2 cm
C. 2.5 cm
D. 3 cm

Answer: A

D Watch Video Solution

41. An object is placed at a distance of 20 cm
from a concave mirror of focal lenght 10 cm .

What is the image distance?
A. +20 cm
B. +10 cm
C. -20 cm
D. -10 cm

Answer: C

D Watch Video Solution

42. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular momentum of the projectile abut the point of projection when the particle is at its maximum height h is.
A. Zero
B. $\frac{m v h^{2}}{\sqrt{2}}$
C. $\frac{m v^{2} h}{\sqrt{2}}$
D. $\frac{m v h}{\sqrt{2}}$

Answer: D

D Watch Video Solution

43. In the middle of the depletion layer of a reverse - biased $p-n$ junction, the
A. electric field is zero
B. potential is maximum

C. electric field is maximum

D. potential is zero

Answer: A

D Watch Video Solution

44. An iron rod is placed parallel to magnetic field of intensity $2000 \mathrm{Am}^{-1}$. The magnetic flux through the rod is $6 \times 10^{-1} \mathrm{~Wb}$ and its crosssectional area is $3 \mathrm{~cm}^{2}$. The magnetic permeability of the rod in $\mathrm{Wb} A^{-1} m^{-1}$ is
A. 10^{-1}
B. 10^{-2}
C. 10^{-3}
D. 10^{-4}

Answer: C

D Watch Video Solution

45. The temperature at which the speed of sound in air becomes double of its value at $27^{\circ} \mathrm{C}$ is
A. $-123^{\circ} C$
B. $927^{\circ} \mathrm{C}$
C. $327^{\circ} \mathrm{C}$
D. $54^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

