đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 63

Physics

1. What is the momentum of a photon having
frequency $1.5 \times 10^{13} \mathrm{~Hz}$?
A. $3.3 \times 10^{-29} \mathrm{~kg} \mathrm{~ms}^{-1}$
B. $3.3 \times 10^{-34} \mathrm{~kg} \mathrm{~ms} \quad-1$
C. $6.6 \times 10^{-34} \mathrm{~kg} \mathrm{~ms}^{-1}$
D. $6.6 \times 10^{-30} \mathrm{~kg} \mathrm{~ms}^{-1}$

Answer: A

D Watch Video Solution
2. The total energy of an electron revolving in
the second orbit of a hydrogen atom is
A. -13.6 eV
B. -1.51 eV
C. $-3.4 e V$
D. Zero

Answer: C

D Watch Video Solution

3. On a friction surface a block a mass M moving at speed v collides elastic with another block of same mass M which is
initially at rest. After collision the first block moves at an angle θ to its initial direction and
has a speed $\frac{v}{3}$. The second block's speed after the collision is

$$
\begin{aligned}
& \text { A. } \frac{3}{4} v \\
& \text { B. } \frac{\sqrt{3}}{4} v \\
& \text { C. } \frac{2 \sqrt{2}}{3} v \\
& \text { D. } \frac{\sqrt{3}}{5} v
\end{aligned}
$$

Answer: C

4. A solid cube of the edge a is molten and moulded in eight identical small solid cubes
and are placed on one other on a straight line with the edge of the bottom cube on the same horizontal plane on which big cube was placed , then the vertical shift in the centre of mass is
A. $\frac{3 a}{2}$
B. 2a
C. $\frac{5 a}{2}$
D. 3 a

- Watch Video Solution

5. With what minimum speed v must a small
ball should be pushed inside a smooth vertical
tube from a height h so that it may reach the
top of the tube? Radius of the tube is R.

A. $\sqrt{2 g(h+2 R)}$
B. $\sqrt{g(5 h+2 R)}$
C. $\sqrt{g(5 h-2 R)}$
D. $\sqrt{2 g(h-2 R)}$
6. A mass attached to one end of a string crosses top - most point on a vertical circle with critical speed. Its centripetal acceleration when string becomes horizontal will be
(where, g=gravitational acceleration)
A. g
B. 3 g
C. 4 g

D. 6 g

Answer: B

D Watch Video Solution

7. A capacitor of capacitance C is fully charged
by a 200 V battery. It is then discharged through a small coil of resistance wire embedded in a thermally insulated block of specific heat $2.5 \times 10^{2} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and of
mass 0.1 kg . if the temperature of the block rises by 0.4 K , what is the value of C ?

A. $300 \mu F$

B. $200 \mu F$
C. $400 \mu F$
D. $500 \mu F$

Answer: D

D Watch Video Solution

8. In potentiometer experiment, null point isobtained at a particular point for a cell on potentiometer wire xcm long. If the lengthof the potentiometer wire is increasedwithout changing the cell, the balancing length will
(Driving source is not changed)
A. increase
B. decrease
C. not change
D. becomes zero

Answer: A

D Watch Video Solution

9. A uniform magentic field of induction B is
confined in a cyclinderical region of radius R.

If the field is incresing at a constant rate of $d B$ $\frac{d B}{d t}=\alpha T / s$, then the intensity of the electric field induced at point P, distant r
from the axis as shown in the figure is
proportional to :

A. $\frac{1}{8} r$

1
B. $\frac{1}{8} r \alpha$
C. $\frac{1}{2} r \alpha$

D. r

Answer: C

D Watch Video Solution

10. Two coil A and B have coefficient of mutual
inductance $\mathrm{M}=2 \mathrm{H}$. The magnetic flux passing
through coil A charges by 4 Weber in 10
seconds due to the change in current in B.

Then
A. Change in current in B in this time interval is 0.5 A
B. Change in current in B in this time interval is 8 A
C. The change in current in B in this time interval is 2 A
D. A change in the current of 1 A in coil A
will produce a change in flux passing
through B by 4 Wb

- Watch Video Solution

11. Two large oppositely charged insulated
plates have a uniform electric field between
them as shown. The distance between the plates is increased by a small amount. Which of the following statements is/are correct.

Statement-(i) The electric field strength
decreases.

Statement-(ii) The electro force of attraction betweeen the plates increases.

Statements-(iii) The potential difference between the plates increases.
A. (I) only
B. (II) only
C. (III) only
D. (I) and (II) only

Answer: C

12. Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q_{1}, Q_{2}, Q_{3}, respectively. It is found that the surface charge denisties on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, $Q_{1}: Q_{2}: Q_{3}$, is
A. $1: 8: 18$
B. 1:3:5
C. $3: 4: 5$
D. 1:4:9

Answer: B

D Watch Video Solution

13. Two satellites A and B go around a planet
in circular orbits of radii 4 R and R respectively.
If the speed of the satellite A is 3 V , then the speed of the satellite B will be
A. 12 v
B. 6 v
C. $\frac{4 v}{3}$
D. $\frac{3 v}{2}$

Answer: B

D Watch Video Solution

14. A person sitting in a chair in a satellite feels weightless because
A. The earth does not attract the object in a satellite
B. The normal force by the chair on the person balance the earth's attraction
C. The normal force is zero
D. The person in satellite is not accelerated

Answer: C

D Watch Video Solution

15. The surface area of a black body is
$5 \times 10^{-4} \mathrm{~m}^{2}$ and its temperature is $727^{\circ} \mathrm{C}$.

Energy radiated by it per minute is (Take

$$
\left.\sigma=5.67 \times 10^{-8} \mathrm{~J} \mathrm{~m}^{-2} s^{-1} K^{-4}\right)
$$

A. $1.7 \times 10^{3} \mathrm{~J}$
B. $2.5 \times 10^{2} J$
C. $3 \times 10^{4} J$
D. $2.7 \times 10^{4} J$

Answer: A

- Watch Video Solution

16. A Carnot engine takes $12.6 \times 10^{6} \mathrm{~J}$ of heat
from a reservoir at $627^{\circ} \mathrm{C}$ and gives it to a sink at $27^{\circ} \mathrm{C}$. The work done by the engine is:
A. $4.2 \times 10^{6} J$
B. $8.4 \times 10^{6} J$
C. $16.8 \times 10^{6} J$
D. Zero

Answer: B

- Watch Video Solution

17. The Carnot cycle of a reversible heat engine consists of
A. One isothermal and two adiabatic processes
B. Two isobaric and one adiabatic
processes
C. Two isothermal and two adiabatic processes
D. Two isobaric and two isothermal processes

Answer: C

D Watch Video Solution

18. A galvanometer coil has a resistance of 50Ω
and the meter shows full scale deflection for a
current of 5 mA . This galvanometer is
converted into a voltmeter of range $0-20 \mathrm{~V}$ by
connecting
A. 3950Ω in series with galvanometer
B. 4050Ω in series with galvanometer
C. 3950Ω in parallel with galvanometer
D. 4050Ω in parallel with galvanometer

Answer: A

D Watch Video Solution

19. A voltmeter having a resistance of 998 ohms is connected to a cell of e.m.f. 2 volt and
internal resistance 2 ohm. The error in the measurment of e.m.f. will be
A. $4 \times 10^{-1} V$
B. $2 \times 10^{-3} V$
C. $4 \times 10^{-3} V$
D. $4 \times 10^{-1} V$

Answer: C

D Watch Video Solution
20. Which of the following properties is False for a bar magnet ?
A. It doesn't produce magnetic field
B. Its like poles repel and unlike poles
attract
C. Its poles cannot be separated
D. It points in North - South direction when
suspended

Watch Video Solution

21. Two persons A and B start from the same location and walked around a square in opposite directions with constant speeds. The square has a side 60 m . Speed of A and B are $4 m s^{-1}$ and $2 m s^{-1}$ respectively. When will they meet for the first time ?
A. 30 s
B. 40 s
C. 10 s

D. 20 s

Answer: B

D Watch Video Solution

22. A body is thrown with the velocity $20 \mathrm{~ms}^{-1}$
at an angle of 60° with the horizontal. Find
the time gap between the two positions of the body where the velocity of the body makes an angle of 30° with horizontal.
B. 0.95 s
C. 1 s
D. 1.5 s

Answer: A

D Watch Video Solution

23. A block of mass m lying on a rough
horizontal plance is acted upon by a horizontal force P and another force Q inclined at an angle θ to the vertical. The block
will remain in equilibrium, if the coefficient of
friction between it and the surface is

A. $\frac{P+Q \sin \theta}{m g+Q \cos \theta}$
B. $\frac{P \cos \theta+Q}{m g-Q \sin \theta}$
C. $\frac{P+Q \cos \theta}{m g+Q \sin \theta}$
D. $\frac{P \sin \theta-Q}{m g-Q \cos \theta}$

Answer: A

24. A brick of mass 2 kg begins to slide down

 on a plane inclined at an angle of 45° with the horizontal. The force of friction will be$$
\begin{aligned}
& \text { A. } \frac{19.6}{\sqrt{2}} N \\
& \text { B. } \frac{9.8}{\sqrt{2}} N \\
& \text { C. } 19.6 \mathrm{~N} \\
& \text { D. } 9.8 \mathrm{~N}
\end{aligned}
$$

25. When the nucleus of . ${ }^{238} U_{92}$ disintegrates
to give one nuclues of ${ }^{206} U_{82}$, the number of
$\alpha-$ particles emitted and the number of
$\beta-$ particles emitted is
A. 4 and 8 respectively
B. 6 and 8 respectively
C. 8 and 6 respectively
D. 8 and 10 respectively

Answer: C

- Watch Video Solution

26. Distance in free space at which intensity of

5 eV neutron beam reduces to half will be nearly : (Take half - life of the neutron $=12.8$ min)
A. 6000 km
B. 12000 km
C. 18000 km

D. 24000 km

Answer: D

D Watch Video Solution

27. A simple pendulum of length l has
maximum angular displacement θ. Then maximum kinetic energy of a bob of mass m is

$$
\begin{aligned}
& \text { А. } \frac{1}{2} \frac{M L}{g} \\
& \text { B. } \frac{M g}{2 L}
\end{aligned}
$$

C. $M g L(1-\cos \alpha)$
D. $\frac{M g L \sin \alpha}{2}$

Answer: C

D Watch Video Solution

28. A particle suspended from a vertical spring oscillates 10 times per second. At the highest point of oscillation , the spring becomes upstretched. Find the speed when the spring
is stretched by 0.20 cm . (Take , $g=\pi^{2} m / s^{2}$)

A. $110.25 \mathrm{~cm} \mathrm{~s}^{-1}$
B. $12.14 \mathrm{~cm} \mathrm{~s}^{-1}$
C. $15.4 \mathrm{~cm} \mathrm{~s}^{-1}$
D. $16.7 \mathrm{~cm} \mathrm{~s}^{-1}$

Answer: C

- Watch Video Solution

29. A particle of charge -16×10^{-18} coulomb moving with velocity $10 \mathrm{~ms}^{-1}$ along the $x-$ axis , and an electric field of magnitude $10^{4} /(m)$ is along the negative $z-$ axis. If the charged particle continues moving along the x - axis, the magnitude of B is

$$
\text { A. } 10^{3} \mathrm{~Wb} \mathrm{~m}^{-2}
$$

B. $10^{5} \mathrm{~Wb} \mathrm{~m}^{-2}$
C. $10^{16} \mathrm{~Wb} \mathrm{~m}^{-2}$
D. $10^{-3} \mathrm{~Wb} \mathrm{~m}^{-2}$

Answer: A

D Watch Video Solution

30. If the uncertainty in the position of an electron is $10^{-10} \mathrm{~m}$, then what be the value of uncertainty in its momentum in $\mathrm{kg} \mathrm{ms} s^{-1}$? $\left(h=6.62 \times 10^{-34} J s\right)$
A. 0.52×10^{-24}
B. 1.01×10^{-24}
C. 1.09×10^{-24}
D. 1.07×10^{-24}

Answer: A

D Watch Video Solution
31. The density of water at the surface of ocean is ρ. If the bulk modulus of water is B,
then the density of ocean water at depth,
when the pressure at a depth is αp_{0} and p_{0} is
the atmospheric pressure is

$$
\begin{aligned}
& \text { A. } \frac{\rho B}{B-(\alpha-1) p_{0}} \\
& \text { B. } \frac{\rho B}{B+(\alpha-1) p_{0}} \\
& \text { C. } \frac{\rho B}{B-\alpha p_{0}} \\
& \text { D. } \frac{\rho B}{B+\alpha p_{0}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

32. A rubber cord of density d, Young's modulus Y and length L is suspended vertically
. If the cord extends by a length 0.5 L under its own weight, then L is

$$
\begin{aligned}
& \text { A. } \frac{Y}{2 d g} \\
& \text { B. } \frac{Y}{d g} \\
& \text { C. } \frac{2 Y}{d y} \\
& \text { D. } \frac{d g}{2 Y}
\end{aligned}
$$

Answer: B
33. A beam of width t incident at 45° on an air-water boundary. The width of the beam is water is
A. $(\mu-1) t$
B. μt
C. $\frac{\sqrt{\mu^{2}-1}}{\mu}$
D. $\frac{\left(\sqrt{2 \mu^{2}-1}\right)}{\mu} t$

Answer: D

- Watch Video Solution

34. Light is incident normally on face $A B$ of a
prism as shown in Figure. A liquid of refractive index μ is placed on face AC of the prism. The prism is made of glass of refractive indes $3 / 2$.

Find the limits of μ for which total internal
reflection takes place on the face $A C$.

$$
\begin{aligned}
& \text { A. } \mu<\frac{3 \sqrt{3}}{4} \\
& \text { B. } \mu>\sqrt{\frac{5}{2}} \\
& \text { C. } \mu>\sqrt{2} \\
& \text { D. } \mu<\sqrt{3}
\end{aligned}
$$

35. A particle of mass m moves in the $X Y$ plane with a velocity v along the straight line
$A B$. If the angular momentum of the particle with respect to origin O is L_{A} when it is at A
and L_{B} when it is at B , then

A. $L_{A}>L_{B}$
B. $L_{A}=L_{B}$
C. The relationship between L_{A} and L_{B} depends upon the slope of the line $A B$

D. $L_{A}<L_{B}$

Answer: B

D Watch Video Solution

36. A sphere of mass m and radius r rolls on a
horizontal plane without slipping with a speed
u. Now it rolls up vertically, then maximum height it would be attain will be

$$
\text { A. } \frac{3 u^{2}}{4 g}
$$

B. $\frac{5 u^{2}}{2 g}$
C. $\frac{7 u^{2}}{10 g}$
D. $\frac{11 u^{2}}{9 g}$

Answer: C

D Watch Video Solution

37. If we add impurity to a metal those atoms also deflect electrons. Therefore,
A. The electrical and thermal conductivities
both increase
B. The electrical and thermal conductivities
both decrease
C. The electrical conductivity increases but
thermal conductivity decreases.

D. The electrical conductivity decreases but

thermal conductivity increases.

Answer: B

38. To detect light of wavelength 500 nm , the photodiode must be fabricated from a semiconductor of minimum bandwidth of

A. 1.24 eV

B. 0.62 eV
C. 2.48 eV
D. 32. eV

Answer: C

D Watch Video Solution
39. During an experiment an ideal gas is found to obey an additional law $V^{2} P=$ constant. The gas is initially at temperature T and volume V .

When it expands to a volume 2 V , the temperature becomes:
A. $\frac{T}{2}$
B. 2 T
C. $\sqrt{2} T$
D. $\frac{T}{\sqrt{2}}$

Answer: C

- Watch Video Solution

40. The dimensions of the ratio of magnetic
flux (ϕ) and permeability (μ) are
A. $\left[M^{0} L^{1} T^{0} A^{1}\right]$
B. $\left[M^{0} L^{-3} T^{0} A^{1}\right]$
C. $\left[M^{0} L^{1} T^{0} A^{-1}\right]$
D. $\left[M^{0} L^{2} T^{0} A^{1}\right]$

Answer: A

D Watch Video Solution

41. In the phenomenon of diffraction of light,
when blue light is used in the experiment instead of red light, then
A. Fringes will become narrower
B. Fringes will become broader
C. No change in fringe width
D. Fring will disappear

Answer: A

- Watch Video Solution

42. The electric and the magnetic field, associated with an e.m. wave propagating along the $+z a x i s$, can be represented by
A. $\left[\vec{E}=E_{0} \hat{i}, \vec{B}=B_{0} \hat{j}\right]$
B. $\left[\vec{E}=E_{0} \hat{k}, \vec{B}=B_{0} \hat{i}\right]$
c. $\left[\vec{E}=E_{0} \hat{j}, \vec{B}=B_{0} \hat{i}\right]$
D. $\left[\vec{E}=E_{0} \hat{j}, \vec{B}=B_{0} \hat{k}\right]$

Answer: A

- Watch Video Solution

43. A wave pulse on a string on a string has
the dimension shown in figure. The wave speed is $\mathrm{v}=1 \mathrm{~cm} / \mathrm{s}$. If point O is a free end. The shape of wave at time $t=3 s$ is

A.

C.

D.

Answer: B

- Watch Video Solution

44. An open organ pipe has a fundamental
frequency of $300 H_{Z}$. The first overtone of a
closed organ pipe has the same frequency as
the first overtone of this open pipe. How long
is each pipe? (Speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$
)
A. 41.25 cm
B. 42.3 cm
C. 49.5 cm
D. 40.5 cm

Answer: A

45. A car of mass 1500 kg is lifted up a distance

 of 30 m by crane A in 0.5 minutes. The second crane B does the same jod in 1 minute. The ratio of their powers isA. $1: 2$
B. 2:1
C. 1:4
D. $4: 1$
(Watch Video Solution

