©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 67

Physics

1. The $K_{\alpha} X$-ray emission line of tungsten occurs at $\lambda=0.021 \mathrm{~nm}$. The energy difference
between K and L levels in this aotm is about: $0.51 M e V$
A. 0.51 MeV
B. 1.2 MeV
C. 59 keV
D. 13.6 eV

Answer: C
(Watch Video Solution
2. The binding energy per nucleon of ${ }_{3}^{7} L i$ and
.${ }_{2}^{4} \mathrm{He}$ nuclei are 5.60 MeV and 7.06 MeV
respectively. In the nuclear reaction
$.{ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow 2 .{ }_{2}^{4} \mathrm{He}+Q$, the value of energy Q released is
A. 19.6 MeV
B. -2.4 MeV
C. 8.4 MeV
D. 17.3 MeV

Answer: D

- Watch Video Solution

3. Two smooth prisms of similar righttriangular sections are arranged on a smooth horizontal plane as shown in figure. The lower prism has a mass η times the upper prism. The prisms are held in an initial position as shown and are then released. As the upper prism touches the horizontal plane, the distance
moved $b y$ the lower prism is

A. $a-b$
B. $\frac{a-b}{3}$
C. $\frac{b-a}{2}$
D. $\frac{a-b}{4}$

Answer: D

- Watch Video Solution

4. A girl of mass 50 kg stands on a railroad car of mass 75 kg moving with velocity $20 \mathrm{~ms}^{-1}$.

Now, the girl begins to run with a velocity of $10 \mathrm{~ms}^{-1}$ with respect to the car in the same direction, as that of the car. The velocity of the car at this instant will be
A. $20 m s^{-1}$
B. $24 m s^{-1}$
C. $16 m s^{-1}$

D. $18 m s^{-1}$

Answer: C

D Watch Video Solution

5. A car round on unbanked curve of radius 92 m without skidding at a speed of $26 m s^{-1}$.

The smallest possible coefficient of static friction between the tyres and the road is
A. 0.75
B. 0.60
C. 0.45
D. 0.30

Answer: A

D Watch Video Solution

6. A particle travels along the arc of a circle of radius r. Its speed depends on the distance travelled l as $v=a \sqrt{l}$ where 'a' is a constant.

The angle α between the vectors of net acceleration and the velocity of the particle is

$$
\begin{aligned}
& \text { A. } \alpha=\tan ^{-1}\left(\frac{2 l}{r}\right) \\
& \text { B. } \alpha=\cos ^{-1}\left(\frac{2 l}{r}\right) \\
& \text { C. } \alpha=\sin ^{-1}\left(\frac{2 l}{r}\right) \\
& \text { D. } \alpha=\cot ^{-1}\left(\frac{2 l}{r}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

7. An ammeter and a voltmeter of resistance R
are connected in series to an electric cell of negligible internal resistance . Their readings are A and V respectively. If another resistance
R is connected in parallel with the voltmeter,
then
A. Both A and V will increase
B. Both A and V will decrease
C. A will decrease and V will increase
D. A will increase and V will decrease

Answer: D

- Watch Video Solution

8. Five resistance are connected as shown in
the figure. The equivalent resistance between points A and C is

A. 44Ω
B. $\frac{20}{3} \Omega$
C. 212Ω
D. 30Ω

Answer: B

D Watch Video Solution

9. In the circuit shown in Fig. A conducting
wire HE is moved with a constant speed v towards left. The complete circuit is placed in
a uniform magnetic field \vec{B} perpendicular to
the plane of circuit inwards. The current in

HKDE is

A. Clockwise
B. Anticlockwise
C. Alternating
D. Zero

Answer: D

D Watch Video Solution

10. A metal disc of radius 200 cm is rotated at
a constant angular speed of $60 \mathrm{rads}^{-1}$ in a plane at right angles to an external field of magnetic induction $0.05 \mathrm{Wbm}^{-2}$. Find the e.m.f. induced between the centre and a point on the rim.
A. 3 V
B. 1.5 V
C. 6 V
D. 9 V

Answer: B

- Watch Video Solution

11. Two similar point charges q_{1} and q_{2} are placed at a distance r apart in the air. The force between them is F_{1}. A dielectric slab of thickness $t(<r)$ and dielectric constant K is
placed between the charges. Then the force between the same charge . Then the fore between the same charges is F_{2}. The ratio is
A. 1
B. K
C. $\left[\frac{r-t+t \sqrt{K}}{r}\right]^{2}$
D. $\left[\frac{r}{r-t+t \sqrt{K}}\right]^{2}$

Answer: C

12. Two identical conducting sphere carrying different charges attract each other with a
force F when placed in air medium at a distance d apart. The spheres are brought into contact and then taken to their original positions. Now, the two sphere repel each other with a force whole magnitude is equal
to the initial attractive force. The ratio between initial charges on the spheres is

$$
\text { A. }-(3+\sqrt{8}) \text { only }
$$

$$
\text { B. }-3+\sqrt{8} o n l y
$$

C. $-(3+\sqrt{8})$ or $(-3+\sqrt{8})$
D. $-\sqrt{8}$

Answer: C

D Watch Video Solution

13. Which of the following graphs correctly represents the variation of g on the - Earth?
A.

C.

D.

Answer: B

- Watch Video Solution

14. Consider that the Earth is revolving around
the Sun in a circular orbit with a period T. The
area of the circular orbit is directly proportional to
A. $T^{2 / 3}$
B. $T^{1 / 3}$
C. $T^{4 / 3}$
D. $T^{1 / 2}$

Answer: C
(Watch Video Solution

15.

Six identical cunducting rods are joined as
shown in Fig. Points A and D are maintained at
temperatures $200^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively.

The temperature of junction B will be
A. $120^{\circ} \mathrm{C}$
B. $100^{\circ} C$
C. $140^{\circ} \mathrm{C}$
D. $80^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

16. when an ideal gas with pressure p and volume V is compressed Isothermally to one fourth of its volume, is pressure is P_{1} when
the same gas is compressed polytropically according to the equation $P V^{1.5}$ contents to one - fourth of its initial volume, the pressure
is P_{2} the ratio $\frac{P_{1}}{P_{2}}$ is
A. $\frac{1}{2}$
B. $\frac{1}{2^{1.5}}$
C. 2
D. $2^{1.5}$

Answer: A

17. A given quantity of a ideal gas is at pressure P and absolute temperature T . The isothermal bulk modulus of the gas is
A. $\frac{2}{3} P$
B. P
C. $\frac{3}{2} P$
D. $2 P$

Answer: B
18. We have a galvanometer of resistance 25Ω.

It is shunted by a 2.5Ω wire. The part of total
current that flows through the galvanometer
is given as
A. $\left(\frac{i}{i_{0}}\right)=\frac{1}{11}$
B. $\left(\frac{i}{i_{0}}\right)=\frac{1}{10}$
C. $\left(\frac{i}{i_{0}}\right)=\frac{1}{9}$
D. $\left(\frac{i}{i_{0}}\right)=\frac{2}{11}$

- Watch Video Solution

19. Two long parallel wires placed 0.08 m apart, carry currents 3 A and 5 A in the same direction. what is the distance from the conductor carrying the larger current to the point where the resultant magnetic field is zero?
A. 0.5 m
B. 0.04 m
C. 0.05 m

D. 0.4 m

Answer: C

- Watch Video Solution

20. There are four light-weight-rod sample A, B,

C, D separately suspended by threads. A bar magnet is slowly brought near each sample and the following observations are noted
(i) A is feebly repelled
(ii) B is feebly attracted
(iii) C is strongly attracted
(iv) D remains unaffected

Which one of the following is true?
A. B is a paramagnetic material
B. C is of diamagnetic material
C. D is of a ferromagnetic material
D. A is of a nonmagnetic material

Answer: A

D Watch Video Solution
21. The one - dimensional motion of a point particle is shown in the figure. Select the correct statement

A. The total distance travelled by the particle is zero
B. The total displacement of the particle is
zero
C. The maximum acceleration of the
particle is $\frac{1}{2} m s^{-2}$
D. The total distance travelled by the particle at the end of 10 s is 100 m

Answer: B

D Watch Video Solution

22. Distance between a frog and an insect on a horizontal plane is 10 m . Frog can jump with a maximum speed of $\sqrt{10} \mathrm{~m} / \mathrm{s}$. Minimum
number of jumps required by the frog to catch
the insect is : $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. 5
B. 10
C. 100
D. 50

Answer: B
(Watch Video Solution
23. A ladder of length $5 m$ is placed against a smooth wall as shown in figure. The coefficient or friction is μ between ladder and ground.

What is the minimum value of μ, If the ladder is not to slip?
$A B=5 \mathrm{~m}$
$A O=4 \mathrm{~m}$
$O B=3 \mathrm{~m}$
A. $\mu=1$
B. $\mu=0$
C. $\mu=\frac{1}{3}$
D. Impossible to balance for any value of μ

Answer: B

D Watch Video Solution

24. The pulley arrangements of Figs. (a) and (b)
are identical. The mass of the rope is
negligible. In (a) the mass m is lifted up by
attaching a mass 2 m to the other end of the rope. In (b), m is lifted up by pulling the other end of the rope with a constant downward force $F=2 m g$. The acceleration of m is the same in both cases

(a)

(b)
A. $g / 3, g / 3$

$$
\text { B. } g / 3, g
$$

C. $g / 4, g / 3$

$$
\text { D. } g / 4, g
$$

Answer: B

- Watch Video Solution

25. 8 kg of $C u^{66}$ undergones radioactive decay
and after 15 minutes only 1 kg remains. The
half-life, in minutes, is then
A. 5
B. $15 / 8$
C. $8 / 15$
D. $15 \ln (2)$

Answer: A

D Watch Video Solution

26. In the β^{+}decay process, the following changes take place inside the nucleus

$$
\text { A. } \cdot{ }_{Z}^{A} X \rightarrow \cdot{ }_{Z-1}^{A} Y+e^{+}+\gamma
$$

B. ${ }_{Z}^{A} X \rightarrow \cdot{ }_{Z+1}^{A} Y+e^{-}+\bar{\gamma}$
C. ${ }_{Z}^{A} X \rightarrow{ }_{Z}^{A} Y+e^{-}+\gamma$
D. ${ }_{Z}^{A} X \rightarrow{ }_{Z}^{A} Y+e^{-}+\bar{\gamma}$

Answer: A

D Watch Video Solution

27. What is the spring constant for the combination of shown shown in figure?

A. k
B. 2 k
C. 4 k
D. $\frac{5 k}{2}$

Answer: C

- Watch Video Solution

28. If a simple pendulum oscillates with an amplitude of 50 mm and time period of 2 sec , then its maximum velocity is
A. $0.10 m s^{-1}$
B. $0.15 m s^{-1}$
C. $0.8 m s^{-1}$
D. $0.26 m s^{-1}$

Answer: B

D Watch Video Solution

29. The de-Brogile wavelength of a neutron at $927^{\circ} \mathrm{C}$ is λ. What will be its wavelength at 27°

C?
A. 4λ
B. 2λ
C. 3λ
D. λ

Answer: B

D Watch Video Solution

30. The photoeletric threshold 4 v is incident on the metal is v. When light of freqency $4 v$ is incident on the metal, the maximum kinetic energy of the emitted photoelectron is
A. 4 hv
B. 3 hv
C. 5 hv

$$
\text { D. } \frac{5}{2} h v
$$

Answer: B

D Watch Video Solution

31. If the Young's modulus of the material is 3
times its modulus of rigidity, then its volume elasticity will be
A. Zero

$$
\text { B. } 3 \times 10^{11} \mathrm{Nm}^{-2}
$$

C. infinity
D. $10.6 \times 10^{11} \mathrm{Nm}^{-2}$

Answer: C

- Watch Video Solution

32. The work done in blowing a soap bubble of

10 cm radius is (Surface tension of the soap
solution is $\frac{3}{100} \mathrm{~N} / \mathrm{m}$)
A. $75.36 \times 10^{-4} J$
B. $37.68 \times 10^{-4} J$
C. $150.72 \times 10^{-4} J$
D. 75.36 J

Answer: A

D Watch Video Solution

33. A convex mirror forms an image one-fourth
the size of the object. If object is at a distance of 0.5 m from the mirror the focal length of the mirror is
A. 0.17 m

$$
\text { B. }-1.5 m
$$

C. $0.4 m$
D. $-0.4 m$

Answer: A

D Watch Video Solution

34. Light has a wavelength 600 nm in free space. it passes into the glass, which has an
index of refraction of 1.50 what is the frequency of the light inside the glass?

A. $3.3 \times 10^{14} \mathrm{~Hz}$
B. $5.0 \times 10^{14} \mathrm{~Hz}$
C. $3.3 \times 10^{5} \mathrm{~Hz}$
D. $5.0 \times 10^{5} \mathrm{~Hz}$

Answer: B

- Watch Video Solution

35. A disc of the moment of inertia ' l_{1} ' is rotating in horizontal plane about an axis passing through a centre and perpendicular to its plane with constant angular speed ' ω_{1} '
. Another disc of moment of inertia ' I_{2} '. having zero angular speed is placed discs are rotating disc. Now, both the discs are rotating with constant angular speed ' ω_{2} '. The energy lost by the initial rotating disc is

$$
\begin{aligned}
& \text { А. } \frac{1}{2}\left[\frac{I_{1}+I_{2}}{I_{1} I_{2}}\right] \omega_{1}^{2} \\
& \text { в. } \frac{1}{2}\left[\frac{I_{1} I_{2}}{I_{1}-i_{2}}\right] \omega_{1}^{2}
\end{aligned}
$$

C. $\frac{1}{2}\left[\frac{I_{1}-I_{2}}{I_{1} I_{2}}\right] \omega_{1}^{2}$
D. $\frac{1}{2}\left[\frac{I_{1} I_{2}}{I_{1}+I_{2}}\right] \omega_{1}^{2}$

Answer: D

D Watch Video Solution

36. A body is rolling down an inclined plane. If kinetic energy of rotation is 40% of kinetic energy in translatory start then the body is a.
A. Solid cylinder
B. Solid sphere
C. Disc
D. Ring

Answer: B

D Watch Video Solution

37. For a common emitter amplifier, the audio frequency voltage across the collector resistance $2 k \Omega$ is 2 V . If the current amplication
factor of the transistor is 200, and the base
resistance is $1.5 k \Omega$, the input signal voltage and base current are
A. 0.15 V and $10 \mu \mathrm{~A}$
B. 0.015 V and 1 A
C. 0.0015 V and 1 mA
D. $0.0075 V$ and $5 \mu A$

Answer: D
38. In a system of two polarisers, it is found
that the intensity of light from the second polarized is half from that of the first polariser
.The angle between their pass axes is
A. 60°
B. 30°
C. 0°
D. 45°

Answer: D

39. A gas is filled in a cylinder. its temperature is increased by 20% on the Kelvin scale and volume is reduced by 10% How much percentage of the gas has to leak for pressure to remind constant?
A. 30%
B. 40%
C. 15%
D. 25%

Answer: D

D Watch Video Solution

40. Choose the wrong statement for zero error and zero correction.
A. If the zero of the vernier scale does not coincide with the zero of the main scale
then the instrument is said to be having a zero error.
B. Zero correction has a magnitude equal
to zero error but sign is opposite to that of the zero error.
C. Zero error is positive when the zero of
vernier scale lies to the left of the zero
of the main scale.
D. Zero error is negative when the zero of
vernier scale lies to the left of the zero
of the main scale.
41. In Young's double slit experiment, the separation between the slits is halved and the distance between the slits and the screen is doubled. The fringe width is
A. Unchanged
B. Halved
C. Doubled
D. Quadrupled

Answer: D

D Watch Video Solution

42. Two coherent narrow slits emitting light of wavelength λ in the same phase are placed parallel to each other at a small separation of 2λ. The light is collected on a screen S which is placed at a distance $\mathrm{D}(\gg \lambda)$ from the slit
S_{1} as shown in figure. Find the finite distance x such that the intensity at P is equal to
intensity 0.

A. $\sqrt{2} D$
B. $\sqrt{3} D$
C. $\sqrt{8} D$
D. $\sqrt{5} D$

- Watch Video Solution

43. Consider the vehicle emitting sound wave
of frequency 700 Hz moving towards an observer at a speed $22 \mathrm{~ms}^{-1}$. Assuming the observer to be at rest, and speed of sound to be $330 \mathrm{~ms}^{-1}$, the frequency of sound as measured by the observer is

$$
\begin{aligned}
& \text { A. } \frac{2525}{4} H z \\
& \text { B. } \frac{1960}{3} H z \\
& \text { C. } \frac{2240}{3} H z
\end{aligned}
$$

D. 750 Hz

Answer: D

D Watch Video Solution

44. The electric field portion of an electromagnetic wave is given by (all variables
in SI units) $E=10^{-4} \sin \left(6 \times 10^{5} t-0.01 x\right)$
The. Frequency (f) and the speed (v) of electromagnetic wave are

$$
\text { A. } f=\frac{30}{\pi} k H z \text { and } v=1.5 \times 10^{7} m s^{-1}
$$

> B. $f=\frac{90}{\pi} k H z$ and $v=6.0 \times 10^{7} \mathrm{~ms}^{-1}$
> C. $f=\frac{300}{\pi} k H z$ and $v=6.0 \times 10^{7} \mathrm{~ms}^{-1}$
> D. $f=\frac{600}{\pi} k H z$ and $v=7.5 \times 10^{7} m s^{-1}$

Answer: C

D Watch Video Solution

45. A light and a heavy body have equal momenta. Which one has greater K.E

A. A light body

B. A heavy body

C. Both have equal kinetic energies
D. Data given is incomplete

Answer: A

- Watch Video Solution

