©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 69

Physics

1. The frequency for a series limit of Balmer and paschen serial respectively are f_{1} and f_{3}
if the frequency of the first line of Balmer
series is then the relation between
f_{1}, f_{2} and f_{3} is
A. $f_{1}-f_{2}=f_{3}$
B. $f_{1}+f_{3}=f_{2}$
C. $f_{1}+f_{2}=f_{3}$
D. $f_{2}-f_{3}=2 f_{1}$

Answer: A

D Watch Video Solution

2. The momentum of a photon of energy 1 MeV

in $\mathrm{kg}-\mathrm{m} / \mathrm{s}$, will be
A. 0.33×10^{6}
B. 7×10^{-24}
C. 10^{-22}
D. 5×10^{-22}

Answer: D

D Watch Video Solution
3. Find the velocity of the center of mass of the system shown in the figure .

A. $\left(\frac{2+2 \sqrt{3}}{3}\right) \hat{i}-\frac{2}{3} \hat{j}$
B. $4 \hat{i}$
C. $\left(\frac{2-2 \sqrt{3}}{3}\right) \hat{i}-\frac{1}{3} \hat{j}$

D. None of these

Answer: A

D Watch Video Solution

4. A body of mass 'm' moving with certain
velocity collides with another identical body at rest. If the collision is perfectly elastic and after the collision both the bodies moves
A. 30°
B. 60°
C. 90°
D. 120°

Answer: C

D Watch Video Solution

5. A disc initially at rest, is rotated about its
axis with uniform angular acceleration. In the
first 2 s , it rotates an angle θ. In the next 2 s ,
the disc rotates through an angle
A. θ
B. 2θ
C. 3θ
D. 4θ

Answer: C

D Watch Video Solution

6. A car is moving with speed $20 \mathrm{~ms}^{-1}$ on a circular path of radius 100 m . Its speed is increasing at a rate of $3 m s^{-2}$. The magnitude
of the acceleration of the car at that moment
is
A. $1 m s^{-2}$
B. $3 m s^{-2}$
C. $4 m s^{-2}$
D. $5 m s^{-2}$

Answer: D
(Watch Video Solution
7. The resistance of a wire is r ohm. If it is melted and stretched to n times its original length, its new resistance will be

$$
\begin{aligned}
& \text { A. } \frac{R}{n} \\
& \text { B. } n^{2} R \\
& \text { C. } \frac{R}{n^{2}} \\
& \text { D. } \mathrm{nR}
\end{aligned}
$$

Answer: B

D Watch Video Solution
8. The equivalent resistance between the points A and B will be (each resistance is 15Ω)

А. 30Ω
B. 8Ω
C. 10Ω

D. 40Ω

Answer: B

D Watch Video Solution

9. When a $10 \mu C$ charge is enclosed by a closed surface, the flux passing through the surface is ϕ. Now another $10 \mu \mathrm{C}$ charge is placed inside the closed surface, then the flux passing through the surface is \qquad .
A. 4ϕ
B. ϕ
C. 2ϕ
D. zero

Answer: C

D Watch Video Solution

10. For a series $L-C-R$ circuit at resonance,
the statement which is not true is
A. Peak energy stored by a capacitor = peak energy stored by an inductor
B. Average power = apparent power
C. Wattles current is zero
D. Power factor is zero

Answer: D

- Watch Video Solution

11.

Two
point
charges
$A=+3 n C$ and $B=+1 n C$ are placed 5
cm apart in the air. The work done to move charge B towards A by 1 cm is
A. $2.0 \times 10^{-7} J$
B. $2.7 \times 10^{-7} \mathrm{~J}$
C. $12.1 \times 10^{-7} J$
D. $1.35 \times 10^{-7} J$

Answer: D
12. In a certain region uniform electric field E and magnetic field B are present in mutually opposite directions. At the instant $t=0$, a particle of mass m carrying a charge q is given velocity v_{0} at angle θ, with the $y-$ axis, in the
$y z$ plane. The time after which the speed of the
particle would be minimum is equal to

A. $\frac{2 \pi m}{B q}$
B. $\frac{m v \sin \theta}{q E}$
C. $\frac{m v \sin \theta}{q E}$
D. $\frac{m v}{q E}$

Answer: C

- Watch Video Solution

13. Out of the following, the only correct statement about satellites is
A. A satellite cannot move in a stable orbit in a plane passing through the earth's
center
B. Geostationary satellites are launched in
the equatorial plane
C. We can use just one geostationary satellite for global communication around the globe

D. The speed of satellite increases with an

increase in the radius of its orbit

Answer: B

- Watch Video Solution

14. A rocket is fired from the earth towards the
sun. At what distance from the earth's centre
is the gravitational force on the rocket zero?
Mass of the sun $=2 \times 10^{30} \mathrm{~kg}$, mass of the earth $=6 \times 10^{24} \mathrm{~kg}$. Neglect the effect of other planets etc. (orbital radius=1.5 $\times 10^{11} \mathrm{~m}$).
A. $2.6 \times 10^{8} m$
B. $3.2 \times 10^{8} m$
C. $3.9 \times 10^{9} \mathrm{~m}$

$$
\text { D. } 2.3 \times 10^{9} \mathrm{~m}
$$

Answer: A

- Watch Video Solution

15. A black body of temperature T is inside a chamber of temperature T_{0} Now the closed chamber is slightly opened to Sun that temeperature of black body (T) and chamber $\left(T_{0}\right)$ remain constant .
A. Black body will absorb more radiation

B. Black body will absorb less radiation

C. Black body will emit more energy
D. Black body will emit energy equal to energy absorbed by it

Answer: D

D Watch Video Solution

16. C_{v} and C_{p} denote the molar specific heat capacities of a gas at constant volume and constant pressure, respectively. Then
A. $C_{p}-C_{v}$ is larger for a diatomic ideal
gas than for a monotomic ideal gas
B. $C_{p}+C_{v}$ is larger for a diatomic ideal
gas than for a monotomic ideal gas
C. $\frac{C_{p}}{C_{v}}$ is larger for a diatomic ideal gas
than for a monotomic ideal gas
D. $C_{p} . C_{v}$ is smaller for a diatomic ideal gas
than for a monotomic ideal gas

Answer: B

17. Two identical containers A and B have frictionless pistons. They contain the same volume of an ideal gas at the same temperature. The mass of the gs in A is m_{A} and that B is m_{B}. The gas in each cylinder is now allowed to expand isothermally to double the intial volume. The changes in the pressure in A and B are found to be Δ and $1.5 \Delta p$ respectively.

$$
\text { A. } 4 m_{A}=9 m_{B}
$$

B. $2 m_{A}=2 m_{B}$
C. $3 m_{A}=2 m_{B}$
D. $9 m_{A}=4 m_{B}$

Answer: C

D Watch Video Solution
18. If a current is passed in a spring then
A. Gets compressed
B. Get expanded

C. Oscillates

D. Remains unchanged

Answer: A

D Watch Video Solution

19. A conducting loop carrying a current I is
placed in a uniform magnetic field ponting
into the plane of the paper as shown. The loop
will have a tendency to

A. Expand
B. Move towards $+v e x$-axis
C. Contract
D. Move towards - ve x-axis

Answer: A

- Watch Video Solution

20. A thin magnetic needle vibrates in the horizontal plane with a period of 4 s . The needle is cut into two halves by a plane normal to the magnetic axis of the needle.

Then, the period of vibration of each half needle is approximately
A. 4 s
B. 2 s
C. 8 s

D. 1 s

Answer: B

D Watch Video Solution

21. The velocity of a particle is zero at time $t=$

2 s , then

A. displacement must be zero in the interval $\mathrm{t}=0$ to $\mathrm{t}=2 \mathrm{~s}$.
B. acceleration may be zero at $\mathrm{t}=2 \mathrm{~s}$.

C. velocity must be zero for $t>2 s$.

D. acceleration must be zero at $t=2 \mathrm{~s}$.

Answer: B

D Watch Video Solution

22. If a vector A is given as $A=4 \hat{i}+3 \hat{j}+12 \hat{k}$
, then the angle subtended with the x-axis is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left[\frac{4}{13}\right] \\
& \text { B. } \sin ^{-1}\left[\frac{3}{13}\right]
\end{aligned}
$$

C. $\cos ^{-1}\left[\frac{3}{13}\right]$
D. $\cos ^{-1}\left[\frac{4}{13}\right]$

Answer: D

D Watch Video Solution

23. A horizontal rod of mass $10 g$ and length

10 cm is placed on a smooth plane inclined at an angle of 60° with the horizontal with the length of the rod parallel to the edge of the inclined plane. A uniform magnetic field
induction B is applied vertically downwards. If
the current through the rod is $1 \cdot 73$ ampere, the value of B for which the rod remains stationary on the inclined plane is
A. 1 T
B. 3 T
C. 2.5 T
D. 4 T

Answer: A

24. A body weighs 6 gms when placed in one pan and 24 gms when placed on the other pan of a false balance. If the beam is horizontal when both the pans are empty, the true weight of the body is :
A. 15 g
B. 13 g
C. 10 g
D. 12 g

Answer: D

- Watch Video Solution

25. . ${ }^{65} \mathrm{Cu}$ will turn into ${ }^{66} \mathrm{Cu}$ if it is bombarded will
A. Protons
B. Neutrons
C. Electrons
D. Alpha particles

Answer: B

- Watch Video Solution

26. A radioactive element has rate of
disintegration 10,000 disintegrations per minute at a particular instant. After four minutes it becomes 2500 disintegrations per minute. The decay constant per minute is
A. $0.2 \log _{e} 2$
B. $0.5 \log _{e} 2$
C. $0.6 \log _{e} 2$
D. $0.7 \log _{e} 2$

Answer: B

- Watch Video Solution

27. Two simple pendulums A and B are made to
oscillate simultaneously and it is found that A
completes 10 oscillations in 20 s and B
completed 8 oscillations in 10 s . The ratio of
the length of A and B is
A. $\frac{25}{64}$
B. $\frac{64}{25}$
C. $\frac{8}{5}$
D. $\frac{5}{4}$

Answer: B

D Watch Video Solution

28. A coin is placed on a horizontal platform which undergoes vertical simple harmonic motion of angular frequency ω. The amplitude
of oscillation is gradually increased. The coin
will leave contact with the platform for the

first time

A. at the highest position of the platform
B. at the mean position of the platform
C. for an amplitude of $\frac{g}{\omega^{2}}$
D. for an amplitude of $\frac{g^{2}}{\omega^{2}}$

Answer: C

- Watch Video Solution

29. In an experiment on the photoelectric effect, the slope of the cut - off voltage versus frequency of incident light is found to be $4.12 \times 10^{-15} V \mathrm{~s}$. The value of Planck's constant is
A. $6.592 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
B. $6.592 \times 10^{-31} \mathrm{~J} \mathrm{~s}$
C. $9.592 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
D. $6.592 \times 10^{-30} \mathrm{~J} \mathrm{~s}$
30. A radio transmitter operates at a frequency of 880 kHz and a power of 10 kW .

The number of photons emitted per second are
A. 1.72×10^{31}
B. 1.327×10^{25}
C. 1.327×10^{37}
D. 1.327×10^{45}

Answer: A

D Watch Video Solution

31. A vessel completely filled with water has
holes ' A ' and ' B ' at depths ' h ' and ' 3 h ' from the top respectively. Hole ' A ' is a square of side ' L ' and ' B ' is circle of radius ' r '. The water flowing out per second from both the holes is same.

Then 'L' is equal to

$$
\text { A. } r^{\frac{1}{2}}(\pi)^{\frac{1}{2}}(3)^{\frac{1}{2}}
$$

B. $r(\pi)^{\frac{1}{4}}(3)^{\frac{1}{4}}$
C. $r(\pi)^{\frac{1}{2}}(3)^{\frac{1}{4}}$
D. $r^{\frac{1}{2}}(\pi)^{\frac{1}{3}}(3)^{\frac{1}{2}}$

Answer: C

D Watch Video Solution

32. The length of a metal wire is l_{1} when the tensionin it is T_{1} and $i s l_{2}$ when the tension is T_{2}. The natural length of the wire is
A. $\frac{l_{1}+l_{2}}{2}$
B. $\sqrt{l_{1} l_{2}}$
C. $\frac{l_{1} T_{2}-l_{2} T_{1}}{T_{2}-T_{1}}$
D. $\frac{l_{1} T_{2}+l_{2} T_{1}}{T_{2}+T_{1}}$

Answer: C

D Watch Video Solution
33. Two lenses of power +10 D and -5 D are
placed in contact. Where should an object be
held from the lens, so as to obtain a virtual image of magnification 2 ?
A. 5 cm
B. -5 cm
C. 10 cm
D. -10 cm

Answer: D

- Watch Video Solution

34. A poinit object O is placed in front of a glass rod having spherical end of radius of curvature 30 cm . The image would be formed at

A. 30 cm left from the pole
B. Infinity
C. 1 cm to the right from the pole
D. 18 cm to the left from the object

Answer: A

D Watch Video Solution

35. If a body of moment of inertia $2 \mathrm{kgm}^{2}$
revolves about its own axis making 2 rotations
per second, then its angular momentum (in J
s) is
A. 2π
B. 4π
C. 6π

D. 8π

Answer: D

D Watch Video Solution

36. A circular disc of radius R rolls without slipping along the horizontal surface with constant velocity v_{0}. We consider a point A on
the surface of the disc. Then, the acceleration of point A is
A. Constant in magnitude
B. Constant in direction
C. Constant in magnitude as well as direction
D. None of the above

Answer: A

D Watch Video Solution

37. Forward bias characteristics of a $p-n$ junction diode is used in which of the following devices ?
A. Voltage Regulation
B. Oscillator
C. Rectifier Circuit
D. Solar cell

Answer: C

D Watch Video Solution

38. The logic circuit shown below has the input waveforms 'A' and 'B' as shown. Pick out the

correct output waveform

A.

B.

C.

D.

Answer: A

- Watch Video Solution

39. The rms speed of hydrogen molecule at a certain temperature is v . If the temperature is doubled and hydrogen gas dissociates into atomic hydrogen , the rms speed will become
A. v
B. $\frac{v}{2}$
C. $2 v$

D. $\sqrt{2} v$

Answer: C

D Watch Video Solution

40. If C be the capacitance and V be the electric potential, then the dimensional formula of $C V^{2}$ is
A. $\left[M L^{-3} T A\right]$
B. $\left[K^{0} L T^{-2} A^{0}\right]$

$$
\begin{aligned}
& \text { C. }\left[M L^{1} T^{-2} A^{-1}\right] \\
& \text { D. }\left[M L^{2} T^{-2} A^{0}\right]
\end{aligned}
$$

Answer: D

D Watch Video Solution

41. A beam of light $(\lambda=600 \mathrm{~nm})$ from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance
between the first dark fringes on either side of
the central bright fringe is
A. 1.2 cm
B. 1.2 cm
C. 2.4 cm
D. 2.4 mm

Answer: D
(Watch Video Solution
42. A two slit Young's interference experiment
it done with monochromatic light of wavelength 6000 A . The slits are 2 mm apart.

The fringes are observed on a screen placed

10 cm away from the slits. Now a transparent plate of thickness 0.5 mm is placed in front of one of the slits and it if found that the interference pattern shifts by 5 mm . The refractive index of the transparent plate is :
A. 1.2
B. 1.5

C. 1.8

D. $4 / 3$

Answer: A

- Watch Video Solution

43. An open organ pipe of length L vibrates in
its fundamental mode. The pressure variation
is maximum
A. At the two ends
B. At the middle of the pipe
C. At the distance $\frac{l}{8}$ inside the ends
D. At the distance $\frac{l}{4}$ inside the ends

Answer: B

D Watch Video Solution

44. A transverse wave along a string is given by
$y=2 \sin \left(2 \pi(3 t-x)+\frac{\pi}{4}\right)$
where x and y are in cm and t in second. Find
acceleration of a particle located at $x=4 \mathrm{~cm}$ at $\mathrm{t}=1 \mathrm{~s}$.
A. $36 \sqrt{2} \pi^{2} \mathrm{cms}^{-2}$
B. $36 \pi^{2} \mathrm{cms}^{-2}$
C. $-36 \sqrt{2} \pi^{2} c m s^{-2}$
D. $-36 \pi^{2} \mathrm{cms}^{-2}$

Answer: C
(Watch Video Solution
45. An ideal spring with spring constant k is hung from the ceiling and a block of mass M is attached to its lower end. The mass is released with the spring initially unstretched. Then the maximum extension in the spring is
A. $\frac{4 M g}{k}$
B. $\frac{2 M g}{k}$
C. $\frac{M g}{k}$
D. $\frac{M g}{2 k}$

Watch Video Solution

