

MATHS

BOOKS - NCERT MATHS (ENGLISH)

APPLICATION OF INTEGRALS

Short Answer Type Qestions

1. Find the area of the region bounded by the

curve $y^2 = 9x$ and y = 3x.

2. Find the area of the region bounded by the

parabola $y^2 = 2px$ and $x^2 = 2py$.

Watch Video Solution

3. Find the area of the region bounded by the

curve
$$y = x^3, y = x + 6$$
 and $x = 0$

4. Find the area of the region bounded by the

curve
$$y^2 = 4x$$
 and $x^2 = 4y$.

Watch Video Solution

5. Find the area of the region included between $y^2 = 9x$ and y = x.

6. Find the area of the region enclosed by the

parabola $x^2 = y$ and the line y = x+ 2.

7. Find the area of the region bounded by line

x = 2 and parabola $y^2 = 8x$.

8. Sketch the region $\left\{(x,0): y=\sqrt{4-x^2}
ight\}$ and X-axis. Find the area of the region using integration.

9. Calculate the area under the curve $y=2\sqrt{x}$

included between the lines x = 0 and x = 1.

10. Using integration, find the area of the region bounded by the line 2y = 5x + 7, X-axis and the line x = 2 and x = 8.

11. Draw a rough sketch of the curve $y = \sqrt{x-1}$ in the interval [1, 5] and find the area under the given curve and between the lines x = 1 and x = 5.

12. Determine the area under the curve $y = \sqrt{a^2 - x^2}$ included between the lines x =0 and x = a.

13. Find the area if the region bounded by

$$y = \sqrt{x}$$
 and $y = x$.

15. Find the area bounded by the curve $y = \sqrt{x}, \, x = 2y + 3$ in the first quadrant and X-axis.

16. Find the area of the region bounded by the

curve $y^2 = 9x$ and y = 3x.

Watch Video Solution

17. Find the area of the region bounded by the parabola $y^2 = 2px$ and $x^2 = 2py$.

18. Find the area of the region bounded by the

curve
$$y = x^3, y = x + 6$$
 and $x = 0$

Watch Video Solution

19. Find the area of the region bounded by the curve $y^2 = 4x$ and $x^2 = 4y$.

20. Find the area of the region included between $y^2 = 9x$ and y = x.

Watch Video Solution

21. Find the area of the region enclosed by the parabola $x^2 = y$ and the line y = x+ 2.

22. Find the area of the region bounded by

line x = 2 and parabola $y^2 = 8x$.

Watch Video Solution

23. Sketch the region
$$\left\{(x,0) \colon y = \sqrt{4-x^2}
ight\}$$

and X-axis. Find the area of the region using integration.

24. Calculate the area under the curve $y = 2\sqrt{x}$ included between the lines x = 0 and x = 1.

25. Using integration, find the area of the region bounded by the line 2y = 5x + 7 , X-

axis and the line x = 2 and x = 8.

26. Draw a rough sketch of the curve $y = \sqrt{x-1}$ in the interval [1, 5] and find the area under the given curve and between the lines x = 1 and x = 5.

28. Find the area if the region bounded by

$$y = \sqrt{x}$$
 and $y = x$.

Watch Video Solution

Long Answer Type Questions

1. Find the area of the region bounded by the

curve
$$y^2 = 2x \ \ ext{and} \ \ x^2 + y^2 = 4x.$$

2. Find the area of region by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.

Watch Video Solution

3. Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (-1, 1), (0,5) and (3,2) respectively.

4. Find the area of the region $\{(x, y): y^2 = 6ax \text{ and } x^2 + y^2 = 16a^2\}$

using method of integration .

5. Compute the area bounded by the lines x + 2y = 2, y - x = 1 and 2x + y = 7.

6. Find the area bounded by the lines y = 4x + 5, y = 5 - x and 4y = x + 5. Watch Video Solution

7. Find the area bounded by the curve $y=2\cos x$ and the X-axis from x = 0 to $x=2\pi.$

8. Draw a rough sketch of the given curve y = 1 + |x + 1|, x = -3, x = 3, y = 0 and find the area of the region bounded by them, using integration.

Watch Video Solution

9. Find the area of the region bounded by the

curve
$$y^2=2x~~{
m and}~~x^2+y^2=4x.$$

11. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (1, 3)and(3, 2).

12. Find the area of the region $\{(x, y): y^2 = 6ax ext{ and } x^2 + y^2 = 16a^2\}$

using method of integration .

13. Compute the area bounded by the lines

x + 2y = 2, y - x = 1 and 2x + y = 7.

14. Find the area bounded by the lines

y = 4x + 5, y = 5 - x and 4y = x + 5.

Watch Video Solution

15. Find the area bounded by the curve $y=2\cos x$ and the X-axis from x = 0 to $x=2\pi.$

16. Draw a rough sketch of the given curve y = 1 + |x + 1|, x = -3, x = 3, y = 0 and find the area of the region bounded by them, using integration.

Watch Video Solution

Objective Type Questions

1. The area of the region bounded by the Y - axis y = cosx and y = sinx Where

$$0\leq x\leq rac{\pi}{2}, ext{ is }$$

A. $\sqrt{2}$ sq units

B. $\left(\sqrt{2}+1\right)$ sq units

C. $\left(\sqrt{2}-1
ight)$ sq units

D. $\left(2\sqrt{2}-1\right)$ sq units

Answer: C

2. The area of the region bounded by the curve

 $x^2 = 4y$ and the straight line x = 4y - 2 is

A.
$$\frac{3}{8}$$
 sq units
B. $\frac{5}{8}$ sq unit
C. $\frac{7}{8}$ sq unit
D. $\frac{9}{8}$ sq units

Answer: D

3. The area of the region bounded by the curve

$$y=\sqrt{16-x^2}$$
 and X-axis is

A. 8π sq units

B. 20π sq units

C. 16π sq units

D. 256π sq units

Answer: A

4. Find the area of the region in the first quadrant enclosed by the y-axis, the line y = x and the circle $x^2 + y^2 = 32$, using integration.

A. 16π sq units

B. 4π sq units

C. 32π sq units

D. 24π sq units

Answer: B

- 5. Area of the regionbounded by the curve
- $y=\mathrm{cos}x$ between x=0 and $x=\pi$ is
 - A.2 sq units
 - B.4 sq units
 - C.3 sq units
 - D.1 sq unit

Answer: A

6. The area of the region bounded by parabola $y^2 = x$ and the straight line 2y = x is

A.
$$\frac{4}{3}$$
sq units

B.1 sq unit

C.
$$\frac{2}{3}$$
 sq unit
D. $\frac{1}{3}$ sq units

Answer: A

7. The area of the region bounded by the curve

 $y={
m sin}x$ between the ordinates x=0, $x={\pi\over 2}$ and the $X-{
m axis}$ is

- A.2 sq units
- B.4 sq units
- C.3 sq units
- D.1 sq unit

Answer: D

8. The area of the region bounded by the

ellipse
$$\displaystyle rac{x^2}{25} + \displaystyle rac{y^2}{16} = 1$$
 is

A. 20π sq units

- B. $20\pi^2$ sq units
- C. $16\pi^2$ sq units
- D. 25π sq units

Answer: A

9. The area of the region by the circle $x^2 + y^2 = 1$ is

A. 2π sq units

B. π sq units

C. $3\pi^2$ sq units

D. 4π sq units

Answer: B

10. The area of the region bounded by the curve y = x + 1 and the lines x = 2, x = 3, is

A.
$$\frac{7}{2}$$
 sq units
B. $\frac{9}{2}$ sq unit
C. $\frac{11}{2}$ sq unit
D. $\frac{13}{2}$ sq units

Answer:

11. The	area of	the re	gion	boun	ded	by	the
curve	x=2y	y+3	and	d t	he	li	ines
y=1,y	y = -1	is					
A. 4	${ m sq}\ { m units}$	5					
$B.\frac{3}{2}$	• sq unit	S					
C. 6	${ m sq}\ { m units}$	5					
D. 8	sq unit						
Answer:	C						

12. The area of the region bounded by the

$$Y - axis \quad y = cosx$$
 and $y = sinx$ Where
 $0 \le x \le \frac{\pi}{2}$, is
A. $\sqrt{2}$ sq units
B. $(\sqrt{2} + 1)$ sq units
C. $(\sqrt{2} - 1)$ sq units
D. $(2\sqrt{2} - 1)$ sq units

Answer: C

13. Using integration, find the area bounded by

the curve $x^2 = 4y$ and the line x = 4y - 2.

A.
$$\frac{3}{8}$$
 sq units
B. $\frac{5}{8}$ sq unit
C. $\frac{7}{8}$ sq unit
D. $\frac{9}{8}$ sq units

Answer: D

14. The area of the region bounded by the curve $y = \sqrt{16 - x^2}$ and X-axis is

A. 8π sq units

B. 20π sq units

C. 16π sq units

D. 256π sq units

Answer: A

15. Area of the region in the first quadrant exclosed by the X-axis, the line y=x and the circle $x^2 + y^2 = 32$ is

A. 16π sq units

B. 4π sq units

C. 32π sq units

D. 24π sq units

Answer: B

16. Area of the regionbounded by the curve

 $y = \mathrm{cos} x$ between x = 0 and $x = \pi$ is

A.2 sq units

- B.4 sq units
- C.3 sq units
- D.1 sq unit

Answer: A

17. The area of the region bounded by parabola $y^2=x$ and the straight line 2y=x is

A.
$$\frac{4}{3}$$
sq units

C.
$$\frac{2}{3}$$
 sq unit
D. $\frac{1}{3}$ sq units

Answer: A

18. The area of the region bounded by the curve $y = \sin x$ between the ordinates x = 0, $x = \frac{\pi}{2}$ and the X – axis is

- A.2 sq units
- B.4 sq units
- C.3 sq units
- D.1 sq unit

Answer: D

19. The area of the region bounded by the

ellipse
$$\displaystyle rac{x^2}{25} + \displaystyle rac{y^2}{16} = 1$$
 is

A. 20π sq units

- B. $20\pi^2$ sq units
- C. $16\pi^2$ sq units
- D. 25π sq units

Answer: A

20. The area of the region by the circle $x^2 + y^2 = 1$ is

- A. 2π sq units
- B. π sq units
- C. $3\pi^2$ sq units
- D. 4π sq units

Answer: B

21. The area of the region bounded by the curve y = x + 1 and the lines x = 2, x = 3, is

A.
$$\frac{7}{2}$$
 sq units
B. $\frac{9}{2}$ sq unit
C. $\frac{11}{2}$ sq unit
D. $\frac{13}{2}$ sq units

Answer:

22. The	area of	the reg	ion b	ounded	by	the
curve	x=2y	+3	and	the	li	nes
y=1,y	= -1i	S				
A. 4	sq units					
$B.\frac{3}{2}$	sq units	5				
C. 6	sq units					
D. 8	$\operatorname{sq}\operatorname{unit}$					

Answer: C

