©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 74

Physics

1. Tritium has a half-life of 12.5 y undergoing
beta decay. What fraction of sample of pure tritium will remain undecayed after 25 y .
A. One half
B. One fourth
C. One third
D. Three fourth

Answer: B

- Watch Video Solution

2. As an electron makes a transition from an excited state to the ground state of a hydrogen - like atom /ion
A. Kinetic energy decrease , potential
energy increase but total energy
remains same
B. Kinetic energy and total energy decrease
but potential energy increases
C. Its kinetic energy increase but potential
energy and total decrease
D. Kinetic energy , potential energy and
total energy decrease
3. A curved road of diameter 1.8 km is banked so that no friction is required at a speed of $30 \mathrm{~ms}^{-1}$. What is the banking angle ?
A. $\tan ^{-1}(0.1)$
B. $\tan ^{-1}(0.3)$
C. $\tan ^{-1}(0.9)$
D. $\tan ^{-1}(1.5)$
4. The linear momentum of a particle varies with time t as $p=a+b t+c t^{2}$. Then, whichh of the following is correct?
A. Force varies with time in a quadratic manner
B. Force is time - dependent
C. The velocity of the particle is
D. The displacement of the particle is proportional to time.

Answer: B

D Watch Video Solution

5. Two buses A and B are moving around concentric circular pathe of radii r_{A} and r_{B} If the two buses complete the circular paths in the sme time. The ratio on their linear speeds is
A. 1
B. $\frac{r_{A}}{r_{B}}$
C. $\frac{r_{B}}{r_{A}}$
D. None of these

Answer: B

D Watch Video Solution
6. A flywheel rotates about a fixed axis and slows down from 300 rpm to 100 rpm in 2 minutes (i) What is the angular acceleration in
rad $\min ^{-2}$? (ii) How many revolutions does
the wheel complete during this time?

$$
\text { A. } \frac{100}{\pi}
$$

B. 100
C. 100π
D. 200π

Answer: D

D Watch Video Solution
7. A silver wire has a temperature coefficient of
resistivity $4 \times 10^{-3} .{ }^{\circ} C^{-1}$ and its resistance
at $20^{\circ} \mathrm{C}$ is 10° Neglecting any change in dimensions due to the change in temperature , its resistance at $40^{\circ} C$ is
A. 0.8Ω
B. 1.8Ω
C. 10.8Ω
D. 11.6Ω

Answer: C

- Watch Video Solution

8. The resistance of metal sheet 1 between the
shaded portion is R_{1} and Resistance between
shaded portion for sheet $2 R_{2}$ the R_{1} / R_{2} is

A. 1
B. $1 / 2$
C. 2
D. 4

Answer: A

D Watch Video Solution

9. A circular disc of radius 0.2 m is placed in a

uniform magnetic field of induction
$\frac{1}{\pi} W b / m^{2}$ in such a way that its axis makes an angle 60° with the field. The magnetic flux
linked with the disc is
A. 0.08 Wb
B. 0.01 Wb
C. 0.02 Wb
D. 0.06 Wb

Answer: C

D Watch Video Solution

10. In an AC circuit the instantaneous values of emf and current are
$i=2 \sin \left(300 t+\frac{\pi}{3}\right)$ amp The average power consumed (in watts) is
A. 200
B. 100
C. 50
D. 400

Answer: B
(Watch Video Solution
11. A charge Q is uniformly distributed over the surface of two conducting concentric spheres of radii R and r (Rgtr). Then, potential at common centre of these spheres is

$$
\begin{aligned}
& \text { A. } \frac{k Q(R+r)}{R r} \\
& \text { B. } \frac{k Q(R+r)}{R^{2}+r^{2}} \\
& \text { C. } \frac{k Q}{\sqrt{R^{2}}+r^{2}} \\
& \text { D. } k Q\left(\frac{1}{R}-\frac{1}{r}\right)
\end{aligned}
$$

Answer: B

12. Two identical capacitors, have the same capacitance C. One of them is charged to potential V_{1} and the other V_{2}. The negative ends of the capacitors are connected together.

When the poistive ends are also connected, the decrease in energy of the combined system is

$$
\begin{aligned}
& \text { A. } \frac{C}{4}\left(V_{1}^{2}-V_{2}^{2}\right) \\
& \text { B. } \frac{C}{4}\left(V_{1}^{2}+V_{2}^{2}\right)
\end{aligned}
$$

> C. $\frac{C}{4}\left(V_{1}-V_{2}\right)^{2}$
> D. $\frac{C}{4}\left(V_{1}+V_{2}\right)^{2}$

Answer: C

D Watch Video Solution

13. A body of mass m is placed on the earth's
surface. It is taken from the earth's surface to
a height $h=3 R$ when R is the radius of the earth. The change in gravitational potential energy of the body is

> A. $\frac{3}{2} m g R$
> B. $\frac{3}{4} m g R$
> C. $\frac{1}{2} m g R$
> D. $\frac{1}{4} m g R$

Answer: B

D Watch Video Solution

14. Two plants A and B have the same average density. Their radii $R A$ and $R B$ are such that $R_{A}: R_{B}=3: 1$. If $g A$ and g_{B} are the
acceleration due to gravity at the surface of
the planets, the $g_{A}: g_{B}$ equals
A. $3: 1$
B. $1: 3$
C. 1:9
D. $\sqrt{3}: 1$

Answer: A

- Watch Video Solution

15. Three rods of the same dimension have
thermal conductivity $3 \mathrm{~K}, 2 \mathrm{~K}$ and K . They are arranged as shown in the figure below

Then, the temperature of the junction in
steady - state is

> A. $\frac{200}{3^{\circ}} C$
> B. $\frac{100}{3^{\circ}} C$
C. $75^{\circ} \mathrm{C}$
D. $\frac{50}{3^{\circ}} C$

Answer: A

D Watch Video Solution

16. A gas expands with temperature according
to the relation $V=K T^{\frac{2}{3}}$. Work done when
the temperature changes by 60 K is.
A. 10R
B. 30 R
C. 40R
D. 20 R

Answer: C

D Watch Video Solution

17. An ideal gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$ As shown in figure. If net
heat supplied to the gas in the cycle is 5 j . Find
the work done by the gas in the process
$C \rightarrow A$ in Joule (taken mole value)

A. $-5 J$
B. -10 J
C. -15 J
D. $-20 J$

Answer: A

- Watch Video Solution

18. One mole of an ideal monoatomic gas at temperature T_{0} expands slowly according to
the law $\frac{p}{V}=$ constant. If the final temperature is $2 T_{0}$, heat supplied to the gas is
A. $2 R T_{0}$
B. $R T_{0}$
C. $\frac{3}{2} R T_{0}$
D. $\frac{1}{2} R T_{0}$

Answer: A

D Watch Video Solution

19. $\mathrm{H}^{+}, \mathrm{He}^{+}$and O^{++}all having the same
kinetic energy pass through a region in which
there is a uniform magnetic field perpendicular to their velocity. The masses of
$\mathrm{H}^{+}, \mathrm{He}^{+}$and O^{2+} are $1 a \mu, 4 a \mu$ and $16 a \mu$ respectively. Then
A. H^{+}will be least deflected.
B. H^{+}and O^{+2} will be deflected equally.
C. O^{+2} will be deflected most.
D. All will be deflected equally.

Answer: B

D Watch Video Solution

20. A bar mangnet has length 3 cm cross sectional area $2 \mathrm{~cm}^{2}$ and magnetic moment 3
$A m^{2}$ the intensity of magnetisation of the bar magnet is
A. $2 \times 10^{5} A m^{-1}$
B. $3 \times 10^{5} \mathrm{Am}^{-1}$
C. $4 \times 10^{5} \mathrm{Am}^{-1}$
D. $5 \times 10^{5} A m^{-1}$

Answer: D

D Watch Video Solution

21. A particle shows distance-time curve as given in this figure. The maximum instantaneous velocity of the particle is
around the point.

A. D
B. A
C. B
D. C

Answer: D

D Watch Video Solution

22. A bomb is dropped from an aeroplane
flying horizontally with a velocity $469 \mathrm{~ms}^{-1}$ at an altitude of 980 m . The bomb will hit the ground after a time (use $g=9.8 m s^{-2}$)
A. 2 s
B. $\sqrt{2} s$
C. $5 \sqrt{2} s$

D. $10 \sqrt{2} s$

Answer: D

D Watch Video Solution

23. A block of mass 1 kg lies on a horizontal
surface in a truck. The coefficient of static
friction between the block and the surface is
0.6. If the acceleration of the truck is $5 \mathrm{~m} / \mathrm{s}^{2}$,
the frictional force acting on the block is. newtons.
A. 5 N
B. 2.5 N
C. 5.88 N
D. 9.8 N

Answer: A

D Watch Video Solution
24. Two masses A and B of 10 kg and 5 kg , respectively, are connected with a string passing over a frictionless pulley fixed at the
corner of a table as shown. The coefficient of static friction between A and the table is 0.2 .

The minimum mass C that should be placed on A to prevent it from moving is equal to

A. 15 kg
B. 5 kg

C. 10 kg

D. 0 kg

Answer: A

D Watch Video Solution

25. A sample contains large number of nuclei.

The probability that a nucleus in sample will decay after four half lives is

$$
\text { A. } \frac{1}{4}
$$

B. $\frac{3}{4}$
C. $\frac{15}{16}$
D. $\frac{7}{16}$

Answer: C

D Watch Video Solution

26. A $0.2 m L$ sample of a solution containing
1.0×10^{-7} curie of.${ }_{1}^{3} H$ is injected to the blood stream of an animal. After sufficient time for circulatory equilibrium to be
established, 0.10 mL of blood is found to have an activity of 20 dpm . Calculate the volume of blood in animal, assuming no change in activity of sample during circulatory equilibrium.
A. 11110 mL
B. 1110 mL
C. 11010 mL
D. 10110 mL

Answer: B

Frictionless
27.

Two springs with negligible masses and force
constants $k_{1}=200 \frac{\mathrm{~N}}{\mathrm{~m}}$ and $K_{2}=160 \frac{\mathrm{~N}}{\mathrm{~m}}$ are attached to the block of mass $m=10 \mathrm{~kg}$ as
shown in the fig. Initially the block is at rest, at
the equilibrium position which both springs are neither stretched nor compressed. At time
$t=0$, sharp impulse of $50 N s$ is given to the block with a hammer along the spring.
A. Period of oscillations for the mass m is

$$
\frac{\pi}{6} \mathrm{~s}
$$

B. Maximum velocity of the mass m during
its oscillation is $10 \mathrm{~ms}^{-1}$
C. Data are insufficient to determine maximum velocity
D. Amplitude of oscillation is 0.83 m
28. Consider the given system of mass m and spring constant k. Find the maximum value of
b so that system performs SHM. Neglect the mass of connecting rod.

A. $\frac{k a^{2}}{m g}$
B. $\frac{k}{m g}$
C. $\frac{k a^{2}}{2 m g}$
D. $\frac{2 k a^{2}}{m g}$

Answer: A

D Watch Video Solution

29. Light of two different frequencies whose photons have energies 1 eV and 2.5 eV respectively illuminate a metallic surface
whose work function is 0.5 eV successively.

Ratio of maximum kinetic energy of emitted electrons will be:
A. 1: 4
B. 1:2
C. 1:1
D. $1: 5$

Answer: B

D Watch Video Solution
30. The de-Broglie wavelength of neutron in
thermal equilibrium at temperature T is

$$
\begin{aligned}
& \text { A. } \frac{25.2}{\sqrt{T}} \AA \\
& \text { B. } \frac{0.308}{T} \AA \\
& \text { C. } \frac{0.025}{\sqrt{T}} \AA \\
& \text { D. } \frac{0.25}{\sqrt{T}} \AA
\end{aligned}
$$

Answer: A

D Watch Video Solution

31. A raindrop of radius 0.3 mm has a terminal
velocity in air $1 \mathrm{~ms}^{-1}$. The viscosity of air is
18×10^{-3} poise. The viscous force on it is
A. 101.73×10^{-4} dyne
B. 101.73×10^{5} dyne
C. 16.95×10^{-4} dyne
D. 16.95×10^{-5} dyne

Answer: A

- Watch Video Solution

32. Two metal wires P and Q of same length
and material are stretched by same load. Yheir
masses are in the ratio $m_{1}: m_{2}$. The ratio of elongation of wire P to that of Q is
A. $m_{1}^{2}: m_{2}^{2}$
B. $m_{2}^{2}: m_{1}^{2}$
C. $m_{2}: m_{1}$
D. $m_{1}: m_{2}$

Answer: C

33. The distance between an object and the screen is 100 cm . A lens produces an image on
the screen when the lens is placed at either of
the positions 40 cm apart. The power of the lens is nearly
A. 3 D
B. 5 D
C. 7 D
D. 9 D

Answer: B

D Watch Video Solution

34. A biconvex lens of focal length forms a circular image of radius r of sun in focal plane.

Then which option is correct
A. $\pi r^{2} \propto f$
B. $\pi r^{2} \propto f^{2}$
C. If lower half part is covered by black
sheet, then area of the image is equal to

D. If f is doubled, intensity will increase

Answer: B

D Watch Video Solution

35. A rigid body is made of three identical thin
rods, each of length L, fastened together in
the form of letter H, Fig. The body is free to
rotate about a horizontal axis that turns along
the length of one of legs of H. The body is
allowed to fall from rest from a position in
which plane of H is horizontal. The angular speed of body when plane of H is vertical is N-…
A. $\sqrt{\frac{g}{L}}$
B. $\frac{1}{2} \sqrt{\frac{g}{L}}$
C. $\frac{3}{2} \sqrt{\frac{g}{L}}$
D. $2 \sqrt{\frac{g}{L}}$

Answer: C

D Watch Video Solution

36. A ring of mass M is kept on w horizontal rough surface . A force F is applied tangentially at its rim as shown . The coefficient of friction between the ring and surface is μ Then
A. Friction will act in the forward direction
B. Friction will act in the backward direction
C. Frictional force will not act
D. Frictional force will be $\mu M g$

Answer: C

D Watch Video Solution

37. A p-n junction in series with a resistance of
$5 k \Omega$ is connected across a 50 V DC source. If
the forward bias resistance of the junction is 50Ω, the forward bias current is
A. 1 mA
B. 2 mA
C. 20 mA
D. 9.9 mA

Answer: D
(Watch Video Solution
38. Given the following truth table where A, B are inputs and Y the output :
$A \quad B \quad Y$
$\begin{array}{lll}0 & 0 & 1\end{array}$
$1 \quad 0 \quad 1$
$\begin{array}{lll}0 & 1 & 1\end{array}$
110
The output Y is :
A. $A \bar{B}$
B. $\bar{A} B$
C. $A B$
D. $\overline{A B}$

Answer: D

D Watch Video Solution

39. A steel wire, of uniform area $2 m^{2}$, is heated up to $50^{\circ} \mathrm{C}$ and is stretched by tying
its ends rigidly. The change in tension, when the temperature falls from $50^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ is
(Take

$$
\left.Y=2 \times 10^{11} \mathrm{Nm}^{-2}, \alpha=1.1 \times 10^{-5^{\circ} \mathrm{C}-1}\right)
$$

A. $1.5 \times 10^{10} N$
B. 5 N
C. 88 N
D. $2.5 \times 10^{-10} N$

Answer: C

D Watch Video Solution

40. Select the dimensional formula of $\frac{B^{2}}{2 \mu 0}$
A. $\left[M^{1} L^{1} T^{2}\right]$
B. $\left[M^{-1} L^{1} T^{2}\right]$
C. $\left[M^{-1} L^{-1} T^{-2}\right]$
D. $\left[M^{1} L^{-1} T^{-2}\right]$

Answer: D

D Watch Video Solution

41. If θ is the polarising angle for two optical media whose critical angles are C_{1} and C_{2}, then the correct relation is

$$
\text { A. } \sin \theta=\frac{\sin C_{2}}{\sin C_{1}}
$$

> B. $\theta=\frac{\sin C_{2}}{\sin C_{1}}$
> C. $\tan \theta=\frac{\sin C_{1}}{\sin C_{2}}$
> D. $\sin \theta=\frac{\sin C_{1}}{\sin C_{2}}$

Answer: C

- Watch Video Solution

42. At the first minimum adjacent to the central maximum of a single-slit diffraction pattern the phase difference between the

Huygens wavelet from the edge of the slit and
the wavelet from the mid-point of the slit is
A. $\frac{\pi}{2} \mathrm{rad}$
B. $\pi r a d$
C. $\frac{\pi}{8} r a d$
D. $\frac{\pi}{4} \mathrm{rad}$

Answer: B
(Watch Video Solution
43. An object of specific gravity ρ is hung from
a thin steel wire. The fundamental frequency
for transverse standing waves in wire is 300 Hz
. The object is immersed in water so that one
half of its volume is submerged. The new
fundamental frequency in Hz is
A. $300\left(\frac{2 \rho-1}{2 \rho}\right)^{\frac{1}{2}}$
B. $300\left(\frac{2 \rho}{2 \rho-1}\right)^{\frac{1}{2}}$
C. $300\left(\frac{2 \rho}{2 \rho-1}\right)$
D. $300\left(\frac{2 \rho-1}{2 \rho}\right)$

Answer: A

- Watch Video Solution

44. Two sound waves of wavelength $1 m$ and
$1.01 m$ in a gas produce 10 beats in 3 s . The velocity of sound in the gas is
A. $150 \mathrm{~ms}^{-1}$
B. $115.2 m s^{-1}$
C. $336.6 m s^{-1}$
D. $200 \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

45. A uniform chain of length 2 m is kept on a table such that a length of 60 cm hangs freely
from the edge of the table. The total mass of
the chain is 4 kg . What is the work done in
pulling the entire chain on the table?
A. 7.2 J
B. 3.6 J
C. 120 J
D. 1200 J

Answer: B
(D) Watch Video Solution

