đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 76

Physics

1. Time taken by the sunlight to pass thought a slab of 4 cm and reflective index 1.5 is
A. 2×10^{10}
B. 2×10^{-8}
C. 2×10^{8}
D. 2×10^{-10}

Answer: D

D Watch Video Solution
2. Identify the logic operation carried out by
the following circuit
A. AND
B. NAND

C. NOR

D. OR

Answer: D

D Watch Video Solution

3. What is the voltage across an ideal p-n junction diode for shown circuit?
A. 0.7 V
B. 1 V
C. 2 V
D. 0 V

Answer: C

D Watch Video Solution
4. An automobile travelling at $50 \mathrm{~km} h^{-1}$,can be stopped at a distance of 40 cm by applying brakes. If the same automobile is travelling at
$90 \mathrm{kmh}^{-1}$,all others conditions remaining the
same and assuming no skidding, the minimum
stopping distance in cm is
A. 72
B. 92.5
C. 102.6
D. 129.6

Answer: D

D Watch Video Solution
5. A plane mirror M is arranged parallel to a wall W at a distance I from it. The light produced by a point source S kept on the wall is reflected by the mirror and produces a patch of light on the wall. The mirroo moves with velocity v towards the wall.

Which of the following statement(s) is / are

correct?
A. The spot of light will move with the
speed v on the wall
B. The spot of light will move on the wall
C. As the mirror comes closer the spot of
light will become larger and shift away
from the wall with speed larger than v.
D. The size of the light spot on the wall
remains the same

Answer: D

6. A right isosceles triangle of side a has changes $q, 3 q$ and - q arranged on its verticals as shown in the figure. What is the electric potential at P midway between the line connecting the +q and -q charges ?
A. $\frac{3 q}{r \varepsilon_{0} a}$
B. $\frac{3 q}{\sqrt{2} \pi \psi l o n_{0} a}$
C. $\frac{q}{\pi \varepsilon_{0} a}$
D. $\frac{3 q}{2 \sqrt{2} \pi \varepsilon_{0} a}$

Answer: D

- Watch Video Solution

7. A stone of mass 1 kg tied to a string 4 m
long and is rotated at constant speed of 40
m / s a vertical circle. The ratio of the tension at
the top and the bottom, is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $11: 12$
B. 39: 41
C. $41: 39$
D. 12: 11

Answer: B

- Watch Video Solution

8. The potential difference between A and B in
the following circuit is
A. 4 V
B. 5.6 V
C. 2.8 V
D. 6 V

Answer: A

- Watch Video Solution

9. A person observes that the full length of a train subtends an angle of 15° If the distance between the train and the person is 3 km , the length of the train, calculated the parallax method, in meters is
A. 45
B. 45π
C. 250π
D. 75π

Answer: C
10. The work that must be done in lifting a body of weight P from the surface of the earth to a height h is

$$
\begin{aligned}
& \text { A. } \frac{P R h}{R-h} \\
& \text { B. } \frac{R+h}{P R h} \\
& \text { C. } \frac{P R h}{R+h} \\
& \text { D. } \frac{R-h}{P R h}
\end{aligned}
$$

11. Which of the following are electromagnetic waves?
A. Cosmic rays
B. Gamma rays
C. β^{+}-rays
D. β^{-}- rays

Answer: B
12. Two identical narrow slits S_{1} and S_{2} are
illuminated by the light of a wavelength λ from
a point source P. If, as shown in the diagram above, the light is then allowed to fall on a screen, and if n is a positive integer, the
condition for destructive interference at Q is

A. $\left(l_{1}-l_{2}\right)=(2 n+1) \lambda / 2$
B. $\left(l_{3}-l_{4}\right)=(2 n+1) \lambda / 2$
C. $\left(l_{1}+l_{2}\right)-\left(l_{3}+l_{4}\right)=n \lambda$
D. $\left(l_{1}+l_{3}\right)-\left(l_{2}+l_{4}\right)=(2 n+1) \lambda / 2$

Answer: D

D Watch Video Solution

13. A wheel of radius 2 m rolls on the ground
with uniform velocity $4 m s^{-1}$. . The relative acceleration of the topmost point of the wheel with respect to the bottom - most point of the wheel is
A. $8 m s^{-2}$
B. $16 m s^{-2}$

C. $4 m s^{-2}$

$$
\text { D. } 32 m s^{-2}
$$

Answer: B

D Watch Video Solution

14. A current of 5 A is flowing at 220 V in the primary coil of a transformer. If the voltage produced in the secondary coil is 2200 V and 50% of power is lost, then the current in the secondary coil will be -
A. 0.25 A
B. 2.5 A
C. 0.5 A
D. $5 A$

Answer: A

D Watch Video Solution

15. Two charges q_{1} and q_{2} are placed 30 cm apart, as shown in the figure. A third charge q_{3}
is moved along the arc of a circle of radius

40 cm from C to D. The change in the potential energy o fthe system is $\frac{q_{3}}{4 \pi \varepsilon_{0}} k$., where k is

A. $8 q_{1}$
B. $6 q_{1}$
C. $8 q_{2}$
D. $6 q_{2}$

Answer: C

D Watch Video Solution

16.

Six identical cunducting rods are joined as shown in Fig. Points A and D are maintained at temperatures $200^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively.

The temperature of junction B will be
A. $120^{\circ} \mathrm{C}$
B. $100^{\circ} C$
C. $140^{\circ} \mathrm{C}$
D. $80^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

17. A radioactive sample S_{1} having the activity
A_{1} has twice the number of nucleic as another
sample S_{2} of activity A_{2}. If $A_{2}=2 A_{1}$, then
the ratio of half-life of S_{1} to the half-life of S_{2}
is
A. $1: 2$
B. 2:1
C. $4: 1$
D. 1: 4

Answer: C
(Watch Video Solution
18. The dimensional formula for permittivity of
free space $\left(\varepsilon_{0}\right)$ in the equation
$F==\frac{1}{4 \pi \varepsilon_{0}}, \frac{q_{1} q_{2}}{r^{2}}$, where symbols have usual meaning is

> A. $\left[M^{1} L^{3} A^{-2} T^{-4}\right]$
> B. $\left[M^{-1} L^{-3} T^{4} A^{2}\right]$
> C. $\left[M^{-1} L^{-3} A^{-2} T^{-4}\right]$
> D. $\left[M^{1} L^{3} T^{2} A^{-4}\right]$

Answer: B
19. Two strings A and B of lengths, $L_{A}=80 \mathrm{~cm}$
and $\quad L_{B}=x c m$ respectively are used separately in a sonometer. The ratio of their densities $\left(\rho_{A} / \rho_{B}\right)$ is 0.81 . The diameter of B is one-half that of A.if the strings have the same tension and fundamental frequency the value of x is
A. 33
B. 102
C. 144
D. 130

Answer: C

D Watch Video Solution

20. In the figure , the intensity of waves
arriving at D from two coherent soucrces
s_{1} and $s_{2} i s I_{0}$. The wavelength of the wave is
$\lambda=4 m$. Resultant intensity at D will be

A. $4 I_{0}$
B. I_{0}
C. $2 I_{0}$
D. zero

Answer: C

21. Ionization energy of $\mathrm{He}{ }^{+}$ion at minimum

 energy position isA. 13.6 eV
B. 27.2 eV
C. 54.4 eV
D. 68.0 eV

Answer: C

D Watch Video Solution
22. A particle moves along x-axis as
$x=4(t-2)+a(t-2)^{2}$
Which of the following is true?
A. The initial velocity of the particle is
$4 m s^{-1}$
B. The acceleration of particle is $2 a$
C. The particle is at origin at $\mathrm{t}=0$
D. None of the above

- Watch Video Solution

23. A disc of radius R and mass M is pivoted at the rim and it set for small oscillations. If simple pendulum has to have the same period as that of the disc, the length of the simple pendulum should be

$$
\begin{aligned}
& \text { A. } \frac{5}{4} R \\
& \text { B. } \frac{2}{3} R \\
& \text { C. } \frac{3}{4} R
\end{aligned}
$$

D. $\frac{3}{2} \mathrm{R}$

Answer: D

D Watch Video Solution

24. Power supplied to a particle of mass 4 kg
varies with time as $P=\frac{3 t^{2}}{2}$ watt. Here t in second. If velocity of particle at $t=0$ is $v=0$, the velocity of particle at time $t=2 s$ will be
A. $1 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m} / \mathrm{s}$
D. $2 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

25. For an electron in the third orbit Bohr
hydrogen atom, the moment of linear momentum is
A. $n \pi$
B. $2 \pi h$
C. $\frac{2 h}{\pi}$
D. $\frac{h}{\pi}$

Answer: D

D Watch Video Solution

26. Radiations of two photon's energy, twice and ten times the work function of metal are incident on the metal surface successsively.

The ratio of maximum velocities of photoelectrons emitted in two cases is
A. $1: 2$
B. $1: 3$
C. 1: 4
D. 1:1

Answer: B
(Watch Video Solution
27. A positive charge particle having change q and mass m has velocity $\vec{v}=v\left(\frac{\hat{i}+\hat{k}}{\sqrt{2}}\right)$ in
the magnetic field B at the origin. Its speed as
the function of y is :

A. $\sqrt{v^{2}+\frac{q E}{2 m} y}$
B. $\sqrt{\left(\frac{B}{E}\right)^{2}+v^{2}+\frac{q E}{2 m} y}$
C. $\sqrt{v^{2}+\frac{2 q E}{m} y}$
D. None of the above

Answer: C

- Watch Video Solution

28. Six moles of an ideal gas performs a cycle
shown in figure. If the temperature are
$T_{D}=600 K, T_{B}=800 K, T_{C}=2200 \mathrm{~K}$ and $T_{D}=1200 K$, the work done per cycle is

A. 20 kJ
B. 30 kJ
C. 40 kJ
D. 60 kJ

D Watch Video Solution

29. A spring is stretched by applying a load to
its free end. The strain produced in the spring is
A. Volumetric
B. Shear
C. Longitudinal and shear
D. Longitudinal

Answer: C

D Watch Video Solution

30. A metal rod of length 'L' and cross-sectional area 'A' is heated through ' $T{ }^{\circ} C$ What is the
force required to prevent the expansion of the rod lengthwise?
A. $\frac{Y A \alpha T}{1-\alpha T}$
B. $\frac{Y A \alpha T}{1+\alpha T}$
C. $\frac{1-\alpha T}{Y A \alpha T}$

D. $\frac{(1+\alpha T)}{Y A \alpha T}$

Answer: B

- Watch Video Solution

31. The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is
$2 s$. The magnet is cut along its length into
three equal parts and these parts are then placed on each other with their like poles
together. The time period of this combination
will be
A. $\frac{2}{3} s$
B. $\sqrt{\frac{2}{3}} s$
C. $\frac{3}{2} s$
D. $\sqrt{\frac{3}{2}} \mathrm{~s}$

Answer: A
(Watch Video Solution
32. A hoop rolls on a horizontal ground without slipping with linear speed v. Speed of
a particle P on the circumference of the hoop at angle θ is :

A. $2 v \sin \left(\frac{\theta}{2}\right)$
B. $v \sin \theta$
C. $2 v \cos \left(\frac{\theta}{2}\right)$
D. $v \cos \theta$

Answer: A

D Watch Video Solution

33. The ammeter reading in the given circuit of

Fig . is -

15
A. $\frac{15}{32} \mathrm{~A}$
B. $\frac{14}{33} \mathrm{~A}$
C. $\frac{17}{33} \mathrm{~A}$
D. $\frac{15}{31} \mathrm{~A}$

Answer: A
34. In the given figure the capacitor of plate area A is charged upto charge q. The ratio of elongations (neglect force gravity) in springs
C and D at equilibrium position is.

A. $\frac{k_{1}}{k_{2}}$
B. $\frac{k_{2}}{k_{1}}$
C. $k_{1} k_{2}$
D. None of these

Answer: B

- Watch Video Solution

35. A gaseous mixture consists of 16 g of
helium and 16 g of oxygen. The ratio $\frac{C_{p}}{C_{v}}$ of the mixture is
A. 1.4
B. 1.54
C. 1.59
D. 1.62

Answer: D

D Watch Video Solution

36. An underformed spring of spring constant k is connected to a bead of mass m which can move along a frictionless rod as shown in the
figure. If the particle strikes the bead at an angle of 45° with the horizontal and sticks to
it, then the maximum elongation of the spring after the collision is

A. $\frac{v}{4} \sqrt{\frac{m}{2 k}}$
B. $\frac{v}{2} \sqrt{\frac{m}{k}}$
C. $\frac{v}{2} \sqrt{\frac{m}{2 k}}$
D. $\frac{v}{4} \sqrt{\frac{m}{k}}$

Answer: B

D Watch Video Solution

37. A magnetic wire of dipole moment $4 \pi A m^{2}$
is bent in the form of semicircle. The new magnetic moment is
A. $4 \pi A m^{2}$
B. $8 \pi A m^{2}$
C. $4 A m^{2}$
D. None of these

Answer: C

D Watch Video Solution

38. A radioactive sample S_{1} having an activity of $5 \mu C i$ has twice the number of nuclei as another sample S_{2} which has an activity of $10 \mu \mathrm{Ci}$. The half-lives of S_{1} and S_{2} can be
A. 20 yr and 5 yr , respectively
B. 20 yr and 10 yr , respectively
C. 10 yr each
D. 5 yr . each

Answer: A

D Watch Video Solution
39. The position Vectors of two identical particles with respect to the origin in the three-dimensional coordinator system are
r_{1} and r_{2} The position of the centre of mass of the system is given by
A. $r_{1}+r_{2}$
B. $2\left(r_{1}+r_{2}\right)$
C. $r_{1}-r_{2}$
D. $\frac{r_{1}+r_{2}}{2}$

Answer: D
(Watch Video Solution
40. In Young's double slit experiment the light emitted from source has $\lambda=6500 \AA$ and the distance between th two slits is 1 mm . Distance between the screen and slit is 1 metre. Distance between third dark and fifth birth fringe will be :
A. 3.2 mm
B. 1.63 mm
C. 0.585 mm
D. 2.31 mm

Answer: B

- Watch Video Solution

41. The force required just to move a body up
an inclined plane is double the force required
just to prevent the body sliding down. If the
coefficient of friction is 0.25 , the angle of
inclination of the plane is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{3}{4}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{1}{4}\right)
\end{aligned}
$$

C. 45°
D. 30°

Answer: A

D Watch Video Solution

42. A large number of droplets, each of radius
a, coalesce to form a bigger drop of radius b.

Assume that the energy released in the process is converted into the kinetic energy of
the drop. The velocity of the drop is $\sigma=$ surface tension, $\rho=$ density)

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{T}{\rho}\left(\frac{1}{r}-\frac{1}{R}\right)} \\
& \text { B. } \sqrt{\frac{2 T}{\rho}\left(\frac{1}{r}-\frac{1}{R}\right)} \\
& \text { C. } \sqrt{\frac{4 T}{\rho}\left(\frac{1}{r}-\frac{1}{R}\right)} \\
& \text { D. } \sqrt{\frac{6 T}{\rho}\left(\frac{1}{r}-\frac{1}{R}\right)}
\end{aligned}
$$

Answer: D
43. A body projected at an angle θ to the horizontal with kinetic energy E_{k}. The potential energy at the highest point of the trajectory is
A. E_{k}
B. $E_{k} \cos ^{2} \theta$
C. $E_{k} \sin ^{2} \theta$
D. $E_{k} \tan ^{2} \theta$

Answer: C
44. Two rods $O A$ and $O B$ of equal length and madd are lying on xy plane as shown in figure .

Let I_{x}, I_{y} and I_{z} be the moment of inertias of both the rods about x, y and z axis respectively
. Then moment of inertias of the combined rod
system is

A. $I_{x}=I_{y}>I_{z}$
B. $I_{x}=I_{y}<I_{z}$
C. $I_{x}>I_{y}>I_{z}$

$$
\text { D. } I_{z}>I_{y}>I_{x}
$$

Answer: B

D Watch Video Solution

45. Einsteins photoelectric equation is
A. Light is emitted only when electrons
jump between orbits
B. Light is absored in quanta of energy $\mathrm{E}=$
C. Electrons are restricted to orbits of
angular momentum $n \frac{h}{2 \pi}$ where n is an integer
D. Electrons are associated with wave of
wavelength $\lambda=\frac{h}{p}$ where p is the momentum

Answer: B

D Watch Video Solution

