©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 77

Physics

1. An electron and proton have the same de-

Broglie wavelength. Then the kinetic energy of
the electron is
A. Zero
B. Less than that of a proton
C. More than that of a proton
D. Equal to that of a proton

Answer: C

D Watch Video Solution

2. When electronic transition occurs from higher energy state to lower energy state with energy difference equal to ΔE electron volts,
the wavelength of the line emitted is approxmately equal to

$$
\begin{aligned}
& \text { A. } \frac{12375}{\Delta E} \mathrm{~m} \\
& \text { B. } \frac{12375}{\Delta E} \mathrm{~nm} \\
& \text { C. } \frac{12375}{\Delta E} \mathrm{pm} \\
& \text { D. } \frac{12375}{\Delta E} \AA
\end{aligned}
$$

Answer: D

D Watch Video Solution

3. A 10 kg mass travelling $2 \mathrm{~m} / \mathrm{s}$ meets and collides elastically with a 2 kg mass travelling 4 / m s in the opposite direction. Find the final velocities of both objects .

$$
\begin{aligned}
& \text { A. } V_{A f}=2 m / s, V_{B f}=3 m / s \\
& \text { B. } V_{A f}=0 \mathrm{~m} / \mathrm{s}, V_{B f}=6 \mathrm{~m} / \mathrm{s} \\
& \text { C. } V_{A f}=5 \mathrm{~m} / \mathrm{s}, V_{B f}=8 \mathrm{~m} / \mathrm{s} \\
& \text { D. } V_{A f}=4 \mathrm{~m} / \mathrm{s}, V_{B f}=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: B

4. Two bodies of 6 kg and 4 kg masses have their velocity $5 \hat{i}-2 \hat{j}+10 \hat{j}$ and
$10 \hat{i}-2 \hat{j}+5 \hat{k}$ respectively. Then, the velocity of their centre of mass is
A. $5 \hat{i}+2 \hat{j}-8 \hat{k}$
B. $7 \hat{i}+2 \hat{j}-8 \hat{k}$
C. $7 \hat{i}-2 \hat{j}+8 \hat{k}$
D. $5 \hat{i}-2 \hat{j}+8 \hat{k}$

D Watch Video Solution

5. A stone of mass 0.3 kg attched to a 1.5 m
long stirng is whirled around in a horizontal
cirlcle at a speed of $6 \mathrm{~m} / \mathrm{s}$ The tension in the string is
A. 10 N
B. 20 N
C. 7.2 N

D. None of these

Answer: C

- Watch Video Solution

6. A wheel which is initially at rest is subjected to a constant angular acceleration about its axis. It rotates through an angle of 15° in time
t sec. The increase in angle through which it rotates in the next 2 t sec is
A. 90°
B. 120°
C. 30°
D. 45°

Answer: B

D Watch Video Solution
7. A non-conducting ring of radius R has
charge Q distributed unevenly over it. If it rotates with an angular velocity ω the
equivalent current will be:

A. $\frac{q \omega}{2 \pi}$
B. $\frac{2 \pi}{q \omega}$
C. $\frac{q \omega}{2 \pi r}$
D. $q r \omega$

Answer: A

D Watch Video Solution

8. The length of a wire of a potentiometer is

100 cm , and the e.m.f. of its standard cell is E
volt. It is employed to measure the e.m.f. of a battery whose internal resistance is 0.5Ω. If the balance point is obtained at $\mathrm{I}=30 \mathrm{~cm}$ from the positive end, the e.m.f. of the battery is .
where i is the current in the potentiometer wire.
A. $\frac{30 E}{100.5}$
B. $\frac{30 E}{100-0.5}$
c. $\frac{30(E-0.5 i)}{100}$,Where i is the current in
the potentiometer wire.
D. $\frac{30 E}{100}$

Answer: D

- Watch Video Solution

9. A conducting wheel in which there are four rods of length 25 cm as shown in the figure is rotating with constant velocity $20 \mathrm{rad} / \mathrm{s}$ in a uniform magnetic field 8 T . The induced potential difference between its centre and rim will be
A. 4 V
B. 5 V
C. 6 V
D. 5 V

Answer: D

D Watch Video Solution

10. Radii of two conducting circular loops are b
and a respectively, where $b \gg a$ Centres of
both loops coincide but planes of both loops
are perpendicular each other. The value of
mutual inductance for these loops

$$
\text { A. } \frac{\mu_{0} \pi b^{2}}{2 a}
$$

B. Zero
C. $\frac{\mu_{0} \pi a b}{2(a+b)}$
D. $\frac{\mu_{0} \pi a^{2}}{2 b}$

Answer: B

D Watch Video Solution

11. Three identical metal plates of area ' A ' are at distance $d_{1} \& d_{2}$ from each other. Metal plate A is uncharged, while plate B \& C have respectively charge+q \& - q. If metal plates A
\& C are connected by switch K through a consumer of unknown resistance. What energy dose the. Consumer give out to its surrounding ?

Assume $d_{1}=d_{2}=d$
A
B
$+q$
-q
A. $\frac{q^{2} d}{4 \varepsilon_{0} A}$
B. $\frac{q^{2} d}{\varepsilon_{0} A}$
C. $\frac{q^{2} d}{2 \varepsilon_{0} A}$
D. $\frac{2 q^{2} d}{\varepsilon_{0} A}$

Answer: A

D Watch Video Solution

12. In the given diagram. Find the heart generated on closing the switch S (Initially the
capacitor of capacitance C is unchanged) -

A. $\frac{3}{2} C V^{2}$
B. $C V^{2}$
C. $\frac{1}{2} C V^{2}$
D. $2 C V^{2}$

Answer: C

D Watch Video Solution

13. A small planet is is revolving around a very
massive star in a circular orbit of radius r with
a period of revolution. T is the gravitational
force between the planet and the star is proportional to $r^{-5 / 2}$,then T will be proportional to
A. $r^{3 / 2}$
B. $r^{5 / 3}$
C. $r^{7 / 4}$
D. r^{3}

Answer: C

D Watch Video Solution

14. The value of g (acceleration due to gravity)
at earth's surface is $10 m s^{-2}$. Its value in $m s^{-2}$ at the centre of the earth which is

uniform mass density is

A. 5
B. Zero
C. 10
D. 1

Answer: B
(Watch Video Solution
15. Two cylinders P and Q have the same length
and diameter and are made of different materials having thermal conductivities in the ratio 2 : 3. These two cylinders are combined to make a cylinder. One end of P is kept at $100^{\circ} \mathrm{C}$ and another end of Q at $0^{\circ} \mathrm{C}$. The temperature at the interface of P and Q is
A. $40^{\circ} C$
B. $50^{\circ} \mathrm{C}$
C. $60^{\circ} \mathrm{C}$

D. $70^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

16. $P-T$ diagram is shown in Fig. Choose the corresponding $V-T$ diagram.

A.
B.
C.
D.

Answer: D

D Watch Video Solution

17. An ideal gas is expanding such that
$P T^{2}=$ constant. The coefficient of volume expansion of Ithe gas is:
A. $\frac{1}{T}$
B. $\frac{2}{T}$
C. $\frac{3}{T}$
D. $\frac{4}{T}$

Answer: C

- Watch Video Solution

18. A magnetic needle lying parallel to the magnetic field required W units of work to turn it through an angle 45° The torque
required to maintain the needle in this position will be
A. $\sqrt{2} W$
B. $\frac{1}{\sqrt{3 W}}$
C. $(\sqrt{2}-1) W$
D. $\frac{W}{\sqrt{2}-1}$

Answer: D

(Watch Video Solution
19. Two particles A and B of masses m_{A} and m_{B} respectively and having the same charge are moving ina plane. A uniform magnetic field exists perependicular to this plane. The speeds of the particles are v_{A} and v_{B} respectively and the trajectories are as shown in the figure. Then,
0
0

○
\bigcirc

$$
\text { A. } m_{A} v_{A}<m_{B} v_{B}
$$

$$
\begin{aligned}
& \text { B. } m_{A} v_{A}>m_{B} v_{B} \\
& \text { C. } m_{A}<m_{B} \text { and } v_{A}<v_{B} \\
& \text { D. } m_{A}=m_{B} \text { and } v_{A}=v_{B}
\end{aligned}
$$

Answer: B

D Watch Video Solution

20. A circular coil of radius 10 cm and 100 turns

carries a current 1 A . What is the magnetic moment of the coil?
A. $3.142 \times 10^{4} A m^{2}$
B. $10^{4} \mathrm{Am}^{2}$
C. $3.142 A m^{2}$
D. $3 A m^{2}$

Answer: C

D Watch Video Solution

21. A ball is dropped it on a floor and bounces back to a height somewhat less then the
original height. The curve which its motion correctly about y and t is

C. $\underbrace{\substack{\uparrow\$}}_{\rightarrow \rightarrow}\)

Answer: B

D Watch Video Solution

22. The range of a projectile, when launched at an angle of 15° with the horizontal is 1.5 km . what is the range of the projectile, when launched at an angle of 45° to the horizontal with the same speed?
A. 0.75 km
B. 1.5 km

C. 3.0 km

D. 6.0 km

Answer: C

- Watch Video Solution

23. The normal reaction on a body placed in a
lift moving up with constant acceleration
$2 m s^{-1}$ is 120 N . Mass of the body is (Take
$g=10 m s^{-2}$)
A. 10 kg
B. 15 kg
C. 12 kg
D. 5 kg

Answer: A

D Watch Video Solution

24. A conveyor belt is moving at a constant speed of $2 m / s$. A box is gently dropped on it.

The coefficient of friction between them is
$\mu=0.5$. The distance that the box will move relative to belt before coming to rest on it taking $g=10 m s^{-2}$ is:
A. 1.2 m
B. 0.6 m
C. Zero
D. 0.4 m

Answer: D

D Watch Video Solution
25. The following fusion reaction take place $2_{1}^{2} A \rightarrow{ }_{2}^{3} B+n+3.27 \mathrm{MeV}$. If 2 kg of $\cdot{ }_{1}^{2} A$ is
subjected to the above reaction, the energy
released is used to light a 100 W light a lamp, how long will the lamp glow?
A. 7×10^{3} years
B. 3×10^{5} years
C. 5×10^{4} years
D. 2×10^{6} years

Watch Video Solution

26. In a nuclear reactor . ${ }^{235} U$ undergoes
fission liberating 200 MeV of energy. The reactor has a 10% efficiency and produces 1000 MW power. If the reactor is to function for $10 y r$, find the total mass of uranium required.
A. 38470
B. 38490
C. 48490
D. 48470

Answer: A

D Watch Video Solution

27. Ratio of kinetic energy at mean position to
potential energy at $A / 2$ of a particle performing SHM
A. $2: 1$
B. $4: 1$
C. $8: 1$
D. 1:1

Answer: B

D Watch Video Solution

28. The amplitude of a simple pendulum is 10
cm . When the pendulum is at a displacement
of 4 cm from the mean position, the ratio of kinetic and potential energies at that point is
A. 5.25
B. 2.5
C. 4.5
D. 7.5

Answer: A

- Watch Video Solution

29. Which of the following figure represents
the variation of particle momentum and the
associated de - Broglie wavelength ?
A.
B.
C.
D.

Answer: D

D Watch Video Solution

30. Two identical metal plates show photoelectric effect. Light of wavelength λ_{A} falls on plate A and λ_{B} fall on plate B and
$\lambda_{A}=2 \lambda_{B}$, The maximum KE of the photoelectrons are K_{A} and K_{B}, respectively, Which one of the following is true?
A. $2 K_{2}=K_{1}$
B. $K_{1}<\frac{K_{2}}{2}$
C. $K_{1}>\frac{K_{2}}{2}$
D. $2 K_{1}=K_{2}$

Answer: B

D Watch Video Solution
31. A stream of non-viscous liquid emerges
from a very short outlet tube at the base of a large . Open tank, in which the depth of liquid is h. The tube is at a fixed angle θ to the ground as shown in the figure. The maximum height of the stream y is

A. $h \sin ^{2} \theta$
B. $h \sin 2 \theta$
C. $\frac{1}{2} h \sin \theta$
D. $h \tan ^{2} \theta$

Answer: A

D Watch Video Solution

32. If ' S ' is stress and ' Y ' is young's modulus of material of a wire, the energy stored in the wire per unit volume is
A. $2 S^{2} Y$
B. $\frac{S^{2}}{2 Y}$
C. $\frac{2 Y}{S^{2}}$
D. $\frac{S}{2 Y}$

Answer: B

- Watch Video Solution

33. The diagram shows a hemispherical shell of mass m and radius R is hinged at point of placed on a horizontal surface. A ball of mass strikes the shell at point A (as shown in the
figure) moving with velocity u inclined at an angle $\theta=\tan ^{-1}\left(\frac{1}{2}\right)$ and then it stops. For the given shell to reach horizontal surface OP what minimum speed u is required ?

A. $2 \sqrt{\frac{g R}{3}}$
B. $\sqrt{\frac{2 g R}{3}}$
C. $\frac{g R}{\sqrt{5}}$
D. Not possible

Answer: D

D Watch Video Solution

34. Each of the two strings of length 51.6 cm
and 49.1 cm are tensioned separately by 20 N
force. Mass per unit length of both the strings
is same and equal to $1 g / m$. When both the
strings vibrate simultaneously, the number of
beats is
A. 7
B. 8
C. 3
D. 5

Answer: A

D Watch Video Solution

35. The thin semi-circular part $A B C$ has mass m_{1} and diameter AOC has mass m_{2} Here, axis passes through mid-point of diameter and the axis is perpendicular to plane $A B C$. Here , $A O=$
$O C=R$. The moment of inertia of this

Composite system about the axis is

A. $\frac{m_{1} R^{2}}{2}+\frac{m_{2} R^{2}}{3}$
B. $\frac{m_{1} R^{2}}{2}+\frac{m_{2} R^{2}}{6}$

> C. $m_{1} R^{2}+\frac{m_{2} R^{2}}{3}$
> D. $m_{1} R^{2}+\frac{m_{2} R^{2}}{12}$

Answer: C

D Watch Video Solution

36. A uniform rod of length 8 a and mass 6 m
lies on a smooth horizontal surface. Two point
masses m and 2 m moving in the same plane
with speed 2 v and v respectively strike the rod perpendicular at distances a and $2 a$ from the
mid point of the rod in the opposite directions
and stick to the rod. The angular velocity of
the system immediately after the collision is

> A. $\frac{6 v}{32 a}$
> B. $\frac{6 v}{33 a}$
> C. $\frac{6 v}{40 a}$
> D. $\frac{6 v}{41 a}$

Answer: D

D Watch Video Solution
37. For a transistor,$\alpha_{d c}$ and $\beta_{d c}$ are the current ratios, then the value of $\frac{\beta_{d c}-\alpha_{d c}}{\alpha_{d c} . \beta_{d c}}$
A. 1
B. 1.5
C. 2
D. 2.5

Answer: A

- Watch Video Solution

38. The combination of NAND gates shown
here in the figure give output C and $C^{\prime} . C$ and
C^{\prime} are equivalent to

A. OR gate and AND gate respectively
B. AND gate and NOT gate respectively
C. AND gate and OR gate respectively

D. OR gate and NOT gate respectively

Answer: A

D Watch Video Solution

39. A closed gas cylinder is divided into two parts by a piston held tight. The pressure and volume of gas in two parts respectively are (P, 5 V) and (10P, V). If now the piston is left free and the system undergoes isothermal process,
then the volumes of the gas in two parts respectively are
A. $4 \mathrm{~V}, 2 \mathrm{~V}$
B. $5 \mathrm{~V}, \mathrm{~V}$
C. $2 \mathrm{~V}, 4 \mathrm{~V}$
D. $3 \mathrm{~V}, 3 \mathrm{~V}$

Answer: C

- Watch Video Solution

40. A substance of mass 4.953 g occupies
$1.5 \mathrm{~cm}^{-3}$ of volume . The density of the substance (in $\mathrm{g} \mathrm{cm}{ }^{-3}$) With correct number of significant figures is
A. 3.3
B. 3.300
C. 3.302
D. 33.0

Answer: A
41. The angle between pass axis of polarizer and analyser is 45°. The percentage of polarized light passing through analyser is
A. 75%
B. 25%
C. 50%
D. 100%

Answer: C
42. The diffraction pattern of a single slit is shown in the figure. The point at which the path difference of the extreme rays is two times the wavelength is

A. point 1
B. point 2
C. point 4
D. points 5

Answer: D

D Watch Video Solution

43. Two strings A and B of lengths, $L_{A}=80 \mathrm{~cm}$
and $\quad L_{B}=x c m$ respectively are used separately in a sonometer. The ratio of their densities $\left(\rho_{A} / \rho_{B}\right)$ is 0.81 . The diameter of B is one-half that of A.if the strings have the same
tension and fundamental frequency the value

of x is

A. 33
B. 32
C. 144
D. 130

Answer: C
(Watch Video Solution
44. What is the ratio of velocity of sound in
hydrogen $(\gamma=7 / 5)$ to that in helium
($\gamma=5 / 3$) at the same temperature?

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{5}{42}} \\
& \text { B. } \sqrt{\frac{5}{21}} \\
& \text { C. } \frac{\sqrt{42}}{5} \\
& \text { D. } \sqrt{\frac{21}{5}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

45. A modern 200 W sodium street lamp emits
yellow light of wavelength $0.6 \mu \mathrm{~m}$. Assuming it
to be 25% efficient in converting electrical energy to light, the number of photons of yellow light it emits per second is
A. 1.5×10^{20}
B. 6×10^{18}
C. 62×10^{20}
D. 3×10^{19}

Answer: A

Watch Video Solution

