©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 83

Physics

1. The distance of closest approach of an alpha-particle fired towards a nucleus with momentum p is r. What will be the distance of
closest approach when the momentum of alpha-particle is $2 p$?
A. 4 r
B. $2 r$
C. $\frac{r}{2}$
D. $\frac{r}{4}$

Answer: D
(Watch Video Solution
2. Energy E of a hydrogen atom with principle quantum number n is given by $E=\frac{-13.6}{n^{2}} \mathrm{eV}$. The energy of a photon ejected when the electron jumps from $n=3$ state to $n=2$ state of hydrogen is approximately
A. 1.5 eV
B. 0.85 eV
C. 3.4 eV
D. 1.9 eV

Answer: D

- Watch Video Solution

3. A uniform solid right circular cone of base radius R is joined to a uniform solid hemisphere of radius R and of the same density, so as to have a common face. The centre of mass of the composite solid lies on
the common face. The height of the cone is:

A. $2 r$
B. $\sqrt{3} r$
C. 3 r

D. $\sqrt{6} r$

Answer: B

D Watch Video Solution

4. A wheel which is initially at rest is subjected to a constant angular acceleration about its axis. It rotates through an angle of 15° in time
$t \mathrm{sec}$. Then how much it rotates in the next $2 t$ sec
A. 90°
B. 120°
C. 30°
D. 45°

Answer: B

D Watch Video Solution

5. A tube of length L is filled completely with an incompressible liquid of mass M and closed at both ends. The tube is then rotated in a horizontal plane about one of its end with a
uniform angular velocity ω. Find the force exerted by the liquid at the other end.
A. $\frac{M \omega^{2} L}{2}$
B. $M l \omega^{2}$
C. $\frac{M L \omega^{2}}{4}$
D. $\frac{M L^{2} \omega 2}{2}$

Answer: A
(Watch Video Solution
6. When a resistor of 11Ω is connected in series with an electric cell, the current following in it is $0.5 A$. Instead, when a resistor of 5Ω is connected to the same electric cell in series, the current increases by $0.4 A$ The internal resistance of the cell is
A. 1.5Ω
B. 2Ω
C. 2.5Ω
D. 3.5Ω

Answer: C

- Watch Video Solution

7. The total current supplied to the given circuit by the battery is
A. $9 A$
B. $6 A$
C. $2 A$
D. $4 A$

Answer: B

D Watch Video Solution

8. In a series L.C.R. circuit, the potential drop
across L, C and R respectively are $40 \mathrm{~V}, 120 \mathrm{~V}$
and 60 V . Them the source voltage is
A. 220 V
B. 160 V
C. 180 V
D. 100 V

Answer: D

D Watch Video Solution

9. The maximum voltage in DC circuit is 282 V .
the effective voltage in AC circuit will be
A. 200 V
B. 300 V
C. 400 V
D. 564 V

Answer: A

D Watch Video Solution

10. For the circuit shown in figure the charge on $4 \mu F$ capacitor is
A. $40 \mu C$
B. $30 \mu C$
C. $24 \mu C$
D. $54 \mu C$

Answer: C

D Watch Video Solution

11. A chance Q placed at thee center of a metallic spherical shell with inner and outer
radii R_{1} and R_{2} respectively. The normal component of the electric field at any point on
the Gaussian surface with radius between
R_{1} and R_{2} will be
A. Zero
B. $\frac{Q}{4 \pi R_{1}^{2}}$
C. $\frac{Q}{4 \pi R_{2}^{2}}$
D. $\frac{Q}{4 \pi\left(R_{1}-R_{2}\right)^{2}}$

Answer: A

- Watch Video Solution

12. A planet of mass m is the elliptical orbit about the sun ($m \ll M_{\text {sun }}$) with an orbital period T. If A be the area of orbit, then its angular momentum would be:
A. $\frac{2 m A}{T}$
B. $m A T$
C. $\frac{m A}{2 T}$
D. $2 m A T$

Answer: A

D Watch Video Solution

13. A satellite is launched into a circular orbit of radius R around the earth. A second satellite is launched into an orbit of radius
(1.02)R. The period of the second satellite is
larger than the first one by approximately
A. 0.7%
B. 1.0%
C. 1.5%
D. 3.0%

Answer: D
(Watch Video Solution
14. If the temperature of the sun were to increase form T to 2 T and its radius from R to $2 R$, then the ratio of the radiant energy received on earth to what it was previously will be
A. 4
B. 16
C. 32
D. 64

Answer: D
15. A gas for which $\gamma=1.5$ is suddenly compressed to $1 / 4$ th of the initial volume.

Then the ratio of the final to initial pressure is
A. 1: 6
B. 1:8
C. 1:4
D. 8:1

- Watch Video Solution

16. Two moles of a certain ideal gas at 300 K were cooled at constant volume so that the pressure was reduced to half t he initial value.

Then, as a result of heating at constant pressure, the gas expanded till its temperature got back ot the initial value. Find the total amount of heat absorbed by the gas in the process.
A. 150 R

B. 300 R

C. 75 R
D. 100 R

Answer: B

D Watch Video Solution

17. A wire bent in the form a right angled triangle $P Q R$, carries a current $1 A$. It is placed in a region of a uniform magnetic field $B=0.2 T$. If $P R=1 m$, the net force on the

wire is

A. 1.73 N
B. 3.46 N
C. 2.732 N
D. Zero

Answer: D
(Watch Video Solution
18. In the figure shown a current I_{1} is established in the long straight wire $A B$.

Another wire CD carrying currrent I_{2} is placed in the plane of the paper. The line joining the ends of this wire is perpendicular to the wire
$A B$. The resultant force on the wire $C D$ is :
E 4
11
4

A. Zero
B. Towards negative x-axis
C. Towards positive y-axis
D. None of these

Answer: D

D Watch Video Solution
19. A steel wire of length I has a magnetic moment M . It is bent in L - shape (Figure). The
new magnetic moment is
A. M
B. $\frac{M}{\sqrt{2}}$
C. $\frac{M}{2}$
D. 2 M

Answer: B

D Watch Video Solution
20. A body is thrown up in a lift with a velocity
$5 m s^{-1}$ relative to the lift and the time of
flight is found to be 0.8 s . The acceleration
with which the lift is moving up is
$\left(g=10 m s^{-2}\right)$
A. $1.5 m s^{-2}$
B. $2 m s^{-2}$
C. $2.5 m s^{-2}$
D. $3 m s^{-2}$

Answer: C

- Watch Video Solution

21. An acroplane is flying horizontally with a velocity of $600 \mathrm{~km} / \mathrm{h}$ and a height of 1960 m .

When it is vectrically above a point A on the ground a bomb is released from it. The bomb strikes the ground at point B. the distance $A B$ is:
A. 1200 m
B. 0.33 m
C. 3.33 m

D. 33 km

Answer: A

D Watch Video Solution

22. A light string passing over a smooth light pulley connects two blocks of masses m_{1} and m_{2} (vertically). If the acceleration of the system is $g / 8$, then the ratio of the masses is
A. $8: 1$
B. 9:7
C. $4: 3$
D. $5: 3$

Answer: B

D Watch Video Solution

23. An 80 kg person is parachuting and is experiencing a downward acceleration of
$2.8 \mathrm{~m} \mathrm{~s}^{-2}$. The mass of the parachute is 5 kg .

If the upward force on the open parachute is
$k \times 10^{2} N$, then what what is the value of k ? (Take $g=9.8 m s^{-2}$)
A. 595 N
B. 675 N
C. 456 N
D. 925 N

Answer: A
(Watch Video Solution
24. A radioactive substance X decys into another radioactive substance Y. Initially, only
X was present . λ_{x} and λ_{y} are the disintegration constant of X and Y . N_{y} will be maximum when.

$$
\begin{aligned}
& \text { A. } \frac{N_{y}}{N_{x}-N_{y}}=\frac{\lambda_{y}}{\lambda_{x}-\lambda_{y}} \\
& \text { B. } \frac{N_{x}}{N_{x}-N_{y}}=\frac{\lambda_{x}}{\lambda_{x}-\lambda_{y}} \\
& \text { C. } \lambda_{y} N_{y}=\lambda_{x} N_{x} \\
& \text { D. } \lambda_{y} N_{x}=\lambda_{x} N_{y}
\end{aligned}
$$

Answer: C

- Watch Video Solution

25. $F_{p p}, F_{\mathrm{nn}}$ and $F_{n p}$ are the nuclear forces
between proton - proton, neutron - neutron
and neutron - proton respectively . Then relation between them is
A. $F_{p p}=F_{\mathrm{nn}} \neq F_{n p}$
B. $F_{p p} \neq F_{\mathrm{nn}} \neq F_{n p}$
C. $F_{p p}=F_{\mathrm{nn}}=F_{n p}$
D. $F_{p p} \neq F_{\mathrm{nn}} \neq F_{n p}$

Answer: C

- Watch Video Solution

26. A block performs simple harmonic motion
with equilibrium point $x=0$. Graph of
acceleration of the block as a function of time is shown. Which of the following statement is

A. Displacement from equilibrium

maximum at $\mathbf{t}=\mathbf{4} \mathbf{s}$

B. Speed is maximum at $\mathrm{t}=\mathbf{4} \mathrm{s}$

C. Speed is minimum at $t=4 \mathrm{~s}$

D. Speed is maximum at $t=3 s$

Answer: B

- Watch Video Solution

27. A simple pendulum of length l has maximum angular displacement θ. Then maximum kinetic energy of a bob of mass m is
A. $m g l(1+\cos \theta)$

$$
\text { B. } m g l\left(1+\cos ^{2} \theta\right)
$$

C. $m g l(1-\cos \theta)$
D. $m g l(\cos \theta-1)$

Answer: C

D Watch Video Solution

28. Lights of two different frequencies whose
photons have energies 1 and 2.5 eV , respectively, successively illuminate a metal whose work function is 0.5 eV . The ratio of the maximum speeds of the emitted electrons
A. $1: 3$
B. 1: 2
C. 3:1
D. 2:1

Answer: B

D Watch Video Solution
29. Maximum kinetic energy $\left(E_{k}\right)$ of a
photoelectron varies with the frequency (v) of
the incident radiation as
A. R
B.
c.
D.

Answer: B

D Watch Video Solution
30. Water flows steadily through a horizontal
pipe of a variable cross-section. If the pressure
of the water is p at a point, where the speed
of the flow is v. What is the pressure at another point, where the speed of the flow is

2 v ? Let the density of water be $1 \mathrm{gcm}^{-3}$.

$$
\begin{aligned}
& \text { A. } p+\left(\frac{3}{2}\right) \rho v^{2} \\
& \text { B. } p-2 \rho v^{2} \\
& \text { C. } p-3 \rho v^{2} \\
& \text { D. } p-\left(\frac{3}{2}\right) \rho v^{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution
31. A hole is made at the bottom of the tank
filled with water (density $=1000 \mathrm{kgm}^{-3}$). If the total pressure at the bottom of the tank is three atmospheres (1 atmosphere
$\left.=10^{5} \mathrm{Nm}^{-2}\right)$, then the velocity of efflux is nearest to
A. $\sqrt{400} \mathrm{~m} / \mathrm{s}$
B. $\sqrt{200} \mathrm{~m} / \mathrm{s}$
C. $\sqrt{600} \mathrm{~m} / \mathrm{s}$
D. $\sqrt{500} \mathrm{~m} / \mathrm{s}$

Answer: C

- Watch Video Solution

32. Two points p and Q lie on either side of an
axis XY as shown. It is desired to produce an
image of p at Q using a spherical mirror, with
XY as the optic axis. The mirror must be

A. Converging and positioned to the left of
pP
B. Diverging and positioned to the left of P
C. Converging and positioned to the right of Q
D. Diverging and positioned to the right of

Q

Answer: A
33. The sun subtends an angle half a degree at the pole of a concave mirror which has a radius of curvature of 15 m . Then the size (diameter) of the image of sun formed by the concave mirror is
A. 8.55 cm
B. 7.55 cm
C. 6.55 cm
D. 5.55 cm

Answer: C

- Watch Video Solution

34. An equilateral triangular frame is made of
three thin massless rods. Three point masses
of mass m each are fixed at vertices of the frame as shown. The system is rotated with uniform angular speed ω about a fixed axis passing through A and normal to the plane of triangular frame. Neglect the effect of gravity.

The tension in rod connecting mass B and C is

A. $m \omega^{2} l$
B. $\frac{m \omega^{2} l}{2}$
C. $\frac{\sqrt{3 m \omega^{2} l}}{2}$
D. zero

Answer: D

- Watch Video Solution

35. A circular disc rolls down an inclined plane.

The ratio of rotational kinetic energy to total
kinetic energy is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$

Answer: B

- Watch Video Solution

36. Which logic gate is respresented by the following logic gates?

2

A. NOR

B. NAND

C. AND
D. OR

Answer: C

D Watch Video Solution
37. In the circuit shown the diode will conduct

current for a

A. complete cycle of ac input

B. complete positive cycle of ac input

C. voltage between 4 V and 6 V of the positive half cycle of input ac
D. voltage below 4 V of the positive half
cycle of input ac

Answer: C

D
 Watch Video Solution

38. A lead bullet strikes a target with velocity of $480 \mathrm{~m} / \mathrm{s}$. if the bullet falls dead, then the rise in temperature of bullet is, (Assuming that heat produced is equally shared between the bullet and target).

$$
\left(J=4.2 \times 10^{3} \mathrm{~J} / \mathrm{kcal}, C=0.03 \mathrm{kcal} / \mathrm{kgK}\right)
$$

A. $557^{\circ} \mathrm{C}$
B. $457 \circ^{C}$
C. $857^{\circ} \mathrm{C}$
D. $754^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

39. The side of a rectangle are 6.01 m and 12 m

Taking the significant figures into account , the area of the rectangle is
A. $7.2 m^{2}$
B. $72.1 m^{2}$
C. $72 m^{2}$
D. $72.12 m^{2}$

Answer: C

- Watch Video Solution

40. The frequency of a light wave in a material
is $2 \times 10^{14} \mathrm{~Hz}$ and wavelength is $5000 \AA$. The refractive index of material will be
A. 1.40
B. 1.50
C. 3.00
D. 1.33

Answer: C

- Watch Video Solution

41. In Fraunhofer diffraction pattern, slit width
is 0.2 mm and screen is at $2 \mathbf{~ m}$ away from the
lens. If wavelength of light used is $5000 \AA$, then
the distance between the first minimum on either side of the central maximum is θ is small and measured in radian)

$$
\text { A. } 10^{-1} m
$$

B. $10^{-2} m$
C. $2 \times 10^{-2} m$
D. $2 \times 10^{-1} m$

Answer: B

D Watch Video Solution
42. n number of waves are produced on a string in 0.5 s . Now, the tension in the string is doubled (Assume length and radius constant),
the number of waves produced in 0.5 s for the

same harmonic will be

A. n
B. $\sqrt{2} n$
C. $\frac{n}{\sqrt{2}}$
D. $\frac{n}{\sqrt{5}}$

Answer: B
(Watch Video Solution
43. In case of closed organ pipe, which harmonin the $p^{t h}$ overtone will be
A. $2 P+1$
B. $2 P-1$
C. $P+1$
D. $p-1$

Answer: A
(Watch Video Solution
44. A man who is running has half the kinetic energy of a boy of half his mass. The man speeds up by $1 \mathrm{~ms}^{-1}$ and then has the same kinetic energy as the boy. The original speed of the boy was:

$$
\text { A. } \sqrt{2} m / s
$$

$$
\begin{aligned}
& \text { B. }(\sqrt{2}-1) \mathrm{m} / \mathrm{s} \\
& \text { C. } \frac{1}{\sqrt{2}-1} \mathrm{~m} / \mathrm{s} \\
& \text { D. } \frac{1}{\sqrt{2}} \frac{m}{s}
\end{aligned}
$$

Answer: C

