đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 86

Physics

1. A difference of 2.3 eV separates two energy
levels in an atom. What is the frequency of
radiation emitted when the atom transits form the upper level to the lower level.

A. $6.95 \times 10^{14} \mathrm{~Hz}$
B. $3.68 \times 10^{15} \mathrm{~Hz}$
C. $5.6 \times 10^{14} \mathrm{~Hz}$
D. $9.11 \times 10^{15} \mathrm{~Hz}$

Answer: C

D Watch Video Solution

2. The total energy of an electron in the first excited state of the hydrogen atom is about -3.4 eV .

What is the kinetic energy of the electron in this state?
A. -3.4 eV
B. -6.8 eV
C. 6.8 eV
D. 3.4 eV

Answer: D

- Watch Video Solution

3. A uniform wooden plank of mass 150 kg and length 8 m is floating on still water with a man of 50 kg at one end of it. The man walks to the other end of the plank and stops. Than the distance covered by the plank is
A. 1 m
B. 4 m
C. 2 m

D. Zero

Answer: C

D Watch Video Solution

4. If the external forces acting on a system
have zero resultant, the centre of mass
A. May move but not accelerate
B. May Accelerate
C. Must not move

D. None of the above

Answer: A

D Watch Video Solution

5. A particle describes a horizontal circle in a
conical funne whoses inner surface is smooth
with speed of $0.5 \mathrm{~m} / \mathrm{s}$. What is the height of
the plane of circle from vertex the funnel?
A. 0.25 cm
B. 2 cm
C. 4 cm
D. 2.5 cm

Answer: D

- Watch Video Solution

6. The ratio of magnetic fields due to a bar magnet at the two axial points P_{1} and P_{2}
which are separated from each other by 10 cm
is $25: 2$. Point P_{1} is situated at 10 cm from the
centre of the magnet. Magnetic length of the bar magnet is (Points P_{1} and P_{2} are on the same side of magnet and distance of P_{2} from the centre is greater than distance of P_{1} from the centre of magnet)
A. 5 cm
B. 10 cm
C. 15 cm
D. 20 cm

Answer: B
7. The drift velocity of the electrons in a copper wire of length 2 m under the application of a potential difference of 220 V is
$0.5 m s^{-1}$. Their mobility (in $m^{2} v^{-1} s^{-1}$)
A. 2.5×10^{-3}
B. 2.5×10^{-2}
C. 5×10^{2}
D. 4.5×10^{-3}

Answer: D

D Watch Video Solution

8. In the circuit figure, the voltmeter reads 30

V . The resistance of the voltmeter is

A. 1200Ω

B. 700Ω

C. 400Ω

D. 300Ω

Answer: A

D Watch Video Solution

9. 4×10^{10} electrons are removed from a neutral metal sphere of diameter 20 cm placed
in air. The magnitude of the electric field (in
$N C^{-1}$) at a distance of 20 cm from its centre is
A. 460
B. 5760
C. Zero
D. 1440

Answer: D

- Watch Video Solution

10. In the given circuit switch K is open. The charge on the capacitor is C is steady-state is
q_{1} Now the key is closed and steady-state charge on C is q_{2} The ratio of charges q_{1} / q_{2} is

A. $3 / 2$
B. $3 / 1$
C. 1
D. $1 / 2$

Answer: A

D Watch Video Solution

11. A small square loop of wire of side \mid is placed inside a large square loop of wire of side $L(L \gg l)$. The loops are co-planer and their centres coincide. The mutual inductance of the system is proportional to
A. $\frac{l}{L}$
B. $\frac{l^{2}}{L}$
C. $\frac{l}{L^{2}}$
D. $\frac{l^{2}}{L^{2}}$

Answer: B

D Watch Video Solution

12. An ac source is connected to a resistive circuits. Which of the following statements are false ?
A. Current lead ahead of voltage in phase
B. Current lags behind voltage in phase
C. Current and voltage are in same phase
D. Any of the above may be true depending upon the value of resistance

Answer: C

- Watch Video Solution

13. The distance of geostationary satellite from
the centre of the earth (radius R) is nearest to
A. 18 R
B. 10 R
C. 7 R
D. 5 R

Answer: C
(Watch Video Solution
14. Two particles of masses ' m ' and ' 9 m ' are separated by a distance 'r'. At a point on the line joining them the gravitational field is zero.

The gravitational potential at that point is ($\mathrm{G}=$ Universal constant of gravitation)

$$
\begin{aligned}
& \text { A. }-\frac{4 G m}{r} \\
& \text { B. }-\frac{8 G m}{r} \\
& \text { C. }-\frac{16 G m}{r} \\
& \text { D. }-\frac{32 G m}{r}
\end{aligned}
$$

15. Three discs, A, B and C having radii $2 m, 4 m$ and6m respectively are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and 500 nm , respectively. The power radiated by them are Q_{A}, Q_{B} and Q_{C} respectively
(a) Q_{A} is maximum (b) Q_{B} is maximum (c) Q_{C} is maximum (d) $Q_{A}=Q_{B}=Q_{C}$
A. Q_{A} is maximum
B. Q_{B} is maximum
C. Q_{C} is maximum

$$
\text { D. } Q_{A}=Q_{B}=Q_{C}
$$

Answer: B

D Watch Video Solution

16. The temperature of a gas is raised while its
volume remains constant, the pressure exerted by the gas on the walls of the container increases because its molecules
A. Lose more kinetic energy to the wall
B. Are in contact with the for a shorter time
C. Strike the wall more often with higher
D. Collide with each other with less
frequency

Answer: C
(Watch Video Solution
17. One mole of an ideal monatomic gas undergoes a process described by the equation $P V^{3}=$ constant. The heat capacity of
the gas during this process is
A. $\frac{3}{2} R$
B. $\frac{5}{2} R$
C. 2R
D. R

Answer: D
18. A coil having N turns is would tightly in the
form of a spiral with inner and outer radii a and b respectively. When a current I passes
through the coil, the magnetic field at the centre is.
A. $\frac{\mu_{0} N I}{b}$
B. $\frac{2 \mu_{0} N I}{a}$
C. $\frac{\mu_{0} N I}{2(b-a)} \log \cdot \frac{b}{a}$
D. $\frac{\mu_{0} I N}{2(b-a)} \log \cdot \frac{a}{b}$

Answer: C

D Watch Video Solution

19. A charge q is accelerated through a potential difference V . It is then passed normally through a uniform magnetic field, where it moves in a circle of radius r. The potential difference required to move it in a circle of radius $2 r$ is
A. 2 V
B. 4 V
C. 1 V
D. 3 V

Answer: B

- Watch Video Solution

20. The acceleratin of a particle increases
linearly with time t as $6 t$. If the initial velocity of the particles is zero and the particle starts
from the origin, then the distance traveled by
the particle in time t will be
A. t
B. t^{2}
C. t^{3}
D. t^{4}

Answer: C
(Watch Video Solution
21. The maximum height attained by a projectile when thrown at an angle θ with the horizontal is found to be half the horizontal range. Then θ is equal to
A. $\tan ^{-1}(2)$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\tan ^{-1}\left(\frac{1}{2}\right)$

Answer: A

22. A heavy uniform chain lies on a horizontal table-top. If the coefficient of friction between the chain and table surface is 0.25 , then the maximum fraction of length of the chain, that can hang over one edge of the table is
A. 20%
B. 25%
C. 35%
D. 15%

Answer: A

D Watch Video Solution

23. A player caught a criket ball of mass 150 g moving at the rate of $20 \mathrm{~ms}^{-1}$. If the catching process the completed in 0.1 s , the force of the blow exerted by the ball on the hands of the player is
A. 0.3 N
B. 30 N

C. 300 N

D. 3000 N

Answer: B

D Watch Video Solution

24. If the ratio of the radius of a nucleus with

61 neutrons to that of helium nucleus is 3 , then the atomic number of this nucleus is
A. 27
B. 47
C. 51
D. 61

Answer: B

D Watch Video Solution

25. Half-life of a radioactive substance A is 4
days. The probability that a nucleus will decay
in two half- lives is
A. $\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{1}{2}$
D. 1

Answer: B

D Watch Video Solution

26. A horizontal platform with an object placed
on it is executing SHM in the vertical direction
. The amplitude of oscillation is 2.5 cm what
must be the least period of these oscillations so that the object is not detached?
A. πs
B. $\frac{\pi}{5} s$
C. $\frac{\pi}{10} s$
D. $\frac{\pi}{15} s$

Answer: C
(Watch Video Solution
27. The displacement of a particle performing
simple harmonic motion is given by,
$x=8 \sin \omega \mathrm{t}+6 \cos \omega \mathrm{t}$, where distance is in cm
and time is in second. What is the amplitude of motion?
A. 10 cm
B. 2 cm
C. 14 cm
D. 3.5 cm

Answer: A
28. When two different materials A and B having atomic number Z_{1} and Z_{2} are used as the target in Coolidge γ - ray tube at different operating voltage V_{1} and V_{2} respectively
their spectrums are found as below.

The correct relation is
A. $V_{1}>V_{2}$ and $Z_{1}>Z_{2}$
B. $V_{1}<V_{2}$ and $Z_{1}<Z_{2}$
C. $V_{1}<V_{2}$ and $Z_{1}>Z_{2}$
D. $V_{1}>V_{2}$ and $Z_{1}<Z_{2}$

Answer: D
29. The de-Broglie wavelength L associated
with an elementary particle of linear momentum p is bets represented by the graph

D.

Answer: D

- Watch Video Solution

30. If the excess pressure inside a soap bubble is balanced by oil column of height 2 mm , then the surface tension of soap solution will

be $\quad(r=1 \mathrm{~cm}$ and density
 $$
\left.d=0.8 g c c^{-1}\right), g=10 \mathrm{~ms}^{-2}
$$

A. $4 N m^{-1}$
B. $4 \times 10^{-1} N m^{-1}$
C. $4 \times 10^{-2} N m^{-1}$
D. $4 \times 10^{-3} N m^{-1}$

Answer: C

- Watch Video Solution

31. The elastic energy per unit volume is terms
of longitudinal strain σ and Young's modulus
Y is

$$
\begin{aligned}
& \text { A. } \frac{Y \sigma^{2}}{2} \\
& \text { B. } \frac{Y \sigma}{2} \\
& \text { C. } \frac{2 Y \sigma^{2}}{2} \\
& \text { D. } \frac{Y^{2} \sigma}{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution
32. Two thin lenses of focal lengths 20 cm and

25 cm are placed in contact. The effective power of the combination is
A. 4.5 D
B. 18 D
C. 45 D
D. 9 D

Answer: D

D Watch Video Solution
33. A plano convex lens has focal length $f=20 \mathrm{~cm}$. If its plane surface is silvered, then new focal length will be
A. 20 cm
B. 40 cm
C. 30 cm
D. 10 cm

Answer: C

D Watch Video Solution
34. The instaneous velocity of point B of the given rod of length 0.5 is $3 \mathrm{~m} / \mathrm{s}$ in the represented direction. The angualr velocity of the rod for minimum velocity of end A is

A. $1.5 r a d s^{-1}$
B. $5.2 r a d s^{-1}$
C. $2.5 r a d s^{-1}$
D. None of these

Answer: B

D Watch Video Solution

35. Three small balls of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg are moving in a plane and their velocities are $1 m s^{-1}, 2 m s^{-2}$ and $3 m s^{-1}$ respectively as shown. The total angular momentum of
the system of three balls about point P at the
given instant of time is

A. $8 k g m^{2} s^{-1}$
B. $9 k g m^{2} s^{-1}$
C. $36 \mathrm{kgm}^{2} s^{-1}$
D. $7 k g m^{2} s^{-1}$

Answer: D
36. In a full wave rectifier circuit operating
from 50 Hz mains frequency, the fundamental
frequency in the ripple would be
A. 100 Hz
B. 70.7 Hz
C. 50 Hz
D. 25 Hz

Answer: A

- Watch Video Solution

37. In an n-p-n transistor circuit, the collector current ia 10 mA . If 90% of the electrons emitted reach the collector.
A. The base current will be 1 mA
B. The base current will be -1 mA
C. The emitter current will be 9 mA
D. The emitter current will be 15 mA
38. The gases carbon-monoxide (CO) and nitrogen at the same temperature have kinetic energies E_{1} and E_{2} respectively. Then
A. $E_{1}=E_{2}$
B. $E_{1}>E_{2}$
C. $E_{1}<E_{2}$
D. E_{1} and E_{2} cannot be compared
39. A current of 2.34 A flows in resistance of
40. 111111Ω The potential difference across
the given resistance with due regard for the significant figure is
A. 26.000 A
B. 26.00 A
C. 26.0 V
D. 26 V

Answer: C

D Watch Video Solution

40. In Young's double slit experiment, if the slit
widths are in the ratio $1: 9$, then the ratio of
the intensity at minima to that at maxima will be
A. 1
B. $\frac{1}{9}$
C. $\frac{1}{4}$
D. $\frac{1}{3}$

Answer: C

D Watch Video Solution

41. In young's double slit experiment, distance between the slit S_{1} and S_{2} is d and the distance between slit and screen is D. Then longest wavelength that will be missing on the screen in front of S_{1} is

$$
\text { A. } \frac{d^{2}}{D}
$$

B. $\frac{d^{2}}{2 D}$
C. $\frac{D}{d^{2}}$
D. None of these

Answer: A

D Watch Video Solution

42. Two periodic waves of intensities I_{1} and I_{2} pass through a region at the same time in the same direction. The sum of the maximum and minimum intensities is
A. $\left(\sqrt{I}_{1}-\sqrt{I}_{2}\right)^{2}$
B. $2\left(I_{1}+I_{2}\right)$
C. $I_{1}+I_{2}$
D. $\left(\sqrt{I}_{1}+\sqrt{I}_{2}\right)^{2}$

Answer: B

D Watch Video Solution

43. A railway engine whistling at a constant frequency moves with a constant speed. It goes past a stationary observer standing
beside the railway track. The frequency (n) of
the sound heard by the observer is plotted agains time (t). Which of the following best represents the resulting curve?

C.

Answer: D

D Watch Video Solution

44. A particle moves along the X-axis from $x=0$ to $x=5 \mathrm{~m}$ under the influence of a force given by $F=7-2 x+3 x^{2}$. Find the work done in the process.
A. 70 J
B. 270 J
C. 35 J
D. 135

Answer: D

- Watch Video Solution

45. A particle moves From a point
$(-2 \hat{i}+5 \hat{j})$ to $(4 \hat{j}+3 \hat{k})$ When a force of
$(4 \hat{i}+3 \hat{j}) \mathrm{N}$ is applied. How much work has been done by the force?
A. 8 J
B. 11 J
C. 5 J
D. 2 J

Answer: C
(Watch Video Solution

