©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 87

Physics

1. The binding energy per nucleon of deuterium and helium nuclei are 1.1 MeV and
7.0 MeV respectively. When two deuterium
nuclei fuse to form a helium nucleus the energy released in the fusion is
A. 13.9 MeV
B. 26.9 MeV
C. 23.6 MeV
D. 19.2 MeV

Answer: C
(Watch Video Solution
2. The ratio of areas within the elctron orbits
for the first excited state to the ground sate
for hydrogen atom is
A. $4: 1$
B. $16: 1$
C. 8:1
D. 2:1

Answer: B

- Watch Video Solution

3. In a gravity free space, man of mass M standing at a height h above the floor, throws
a ball of mass m straight down with a speed u.
When the ball reaches the floor, the distance of the man above the floor will be.
A. $h\left(1+\frac{m}{M}\right)$
B. $h\left(2-\frac{m}{M}\right)$
C. 2 h
D. a function of M, h and u

Answer: A
4. A steel ball strikes a fixed smooth steel plate
placed on a horizontal surface atan angle θ with the vertical. If the coefficient of restitution is e, the angle at which the rebound will take place is:
A. θ
B. $\tan ^{-1}\left[\frac{\tan \theta}{e}\right]$
C. $e \tan \theta$
D. $\tan ^{-1}\left[\frac{e}{\tan \theta}\right]$

Answer: B

D Watch Video Solution

5. A partical of mass m oscillates along the
horizontal diameter $A B$ inside a smooth
spherical $A B$ inside a smooth sperical shell of radius R. At any instate K. E. of the partical
is K. Then force applied by partical on the on
the shell at this instant is:

A. $\frac{K}{R}$
B. $\frac{2 K}{R}$
C. $\frac{3 K}{R}$
D. $\frac{K}{2 R}$

- Watch Video Solution

6. The real angle of dip, if a magnet is suspended at an angle of 30° to the magnetic meridian and the dip needle makes an angle of 45° with horizontal, is:
A. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. $\tan ^{-1}(\sqrt{3})$
C. $\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right)$
D. $\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Answer: D

D Watch Video Solution

7. The resistivity of a potentiometer wire is
$40 \times 10^{-8} \Omega-m$ and its area of cross section
is $8 \times 10^{-6} \mathrm{~m}^{2}$. If 0.2 A current is flowing
through the wire, the potential gradient will be

$$
\text { A. } 0.1 \mathrm{Vm}^{-1}
$$

B. $10^{-2} V m^{-1}$
C. $10^{-3} V m^{-1}$
D. $10^{-4} V m^{-1}$

Answer: B

D Watch Video Solution

8. An ionization chamber with parallel conducting plates as anode and cathode has
5×10^{7} electrons and the same number of singly-charged positive ions per cm^{2}. The
electrons are moving at $0.4 \mathrm{~m} / \mathrm{s}$. The current density from anode to cathodes $4 \mu A / m^{2}$. The velocity of positive ions moving towards cathode is
A. $0.1 m s^{-1}$
B. $0.4 m s^{-1}$
C. Zero
D. $1.6 m s^{-1}$

Answer: A
9. A charge of $1 \mu \mathrm{C}$ is divided into parts such
that their charges are in the ratio of $2: 3$.

These two charges are kept at a distance 1 m apart in vacuum. Then, the electric force between them (in N) is
A. 0.216
B. 0.00216
C. 0.0216
D. 2.16

Answer: B

D Watch Video Solution

10. Two identical small conducting balls have positive charges q_{1} and q_{2} respectively. The
force between the balls when they are placed
at a separation is F. The balls are brought together so that they touch and then put back in their original positions. Prove that the force between the balls now, cannot be less than F.
A. Less than that before the balls touched
B. Greater than that before the balls
touched
C. Same as that before the balls touched
D. Zero

Answer: B

D Watch Video Solution

11. The primary winding of a transformer has

100 turns and its secondary winding has 200 turns. The primary is connected to an ac supply of 120 V and the current flowing in it is

10 A . The voltage and the current in the secondary are
A. $240 \mathrm{~V}, 5 \mathrm{~A}$
B. $240 \mathrm{~V}, 10 \mathrm{~A}$
C. $60 \mathrm{~V}, 20 \mathrm{~A}$
D. $120 \mathrm{~V}, 20 \mathrm{~A}$

Answer: A

D Watch Video Solution

12. A voltage of peak value 283 V and varying frequency is applied to series LCR combination in which $\quad R=3 \Omega, L=25 m H \quad$ and
$C=400 \mu F$. Then the frequency (in Hz) of the source at which maximum power is dissipated in the above is
A. 48.4
B. 52.7
C. 47.4
D. 50.3

Answer: D

D Watch Video Solution

13. A planet of mass 4 times earth spins about
itself and completes one rotation is 96 hours.

The radius of a secondary stationary satellite
about this planet in comparisons to the radius
of the geostationary orbit around the earth is
A. 4 times
B. $\left(\frac{1}{4}\right)$ times
C. 2 times
D. $\left(\frac{1}{2}\right)$ times

Answer: A
(Watch Video Solution
14. Two satellites of masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are revolving around earth in circular orbits of radii r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively. Which of the following statements is true regarding their velocities V_{1} and V_{2}
A. $v_{1}=v_{2}$
B. $v_{1}>v_{2}$
C. $v_{1}<v_{2}$
D. $\frac{v_{1}}{r_{1}}=\frac{v_{2}}{r_{2}}$

Answer: C

- Watch Video Solution

15. The total energy radiated from a block
body source at constant temperature is collected for one minute and is used to heat a quantity of water. The temperature of water is
found to increase from $20^{\circ} \mathrm{C}$ to $20.5^{\circ} \mathrm{C}$. If the absolute temperature of the blackbody is doubled and the experiment is repeated with
the same quantity of water of $20^{\circ} \mathrm{C}$, the temperature of water will be:
A. $21^{\circ} \mathrm{C}$
B. $22^{\circ} \mathrm{C}$
C. $24^{\circ} \mathrm{C}$
D. $28^{\circ} \mathrm{C}$

Answer: D
(Watch Video Solution
16. In a Carnot engine when $T_{2}=0^{\circ} C$ and
$T_{1}=200^{\circ} C$ its efficiency is η_{1} and when
$T_{1}=0^{\circ} C$ and $T_{2}=-200^{\circ} C$. Its efficiency
is η_{2}, then what is η_{1} / η_{2} ?
A. 0.577
B. 0.733
C. 0.638
D. Cannot be calculated

Answer: A
17. Shown in the figure are three $P-V$ diagrams. The case in which the work done is minimum

A. I
B. II
C. III
D. Work done is same in all the cases

Answer: C

D Watch Video Solution
18. A magnetic dipole of magnetic moment
$6 \times 10^{-2} A m^{2}$ and moment of inertia
$12 \times 10^{-6} \mathrm{kgm}^{2}$ performs oscillations in a
magnetic field of 2×10^{-2} T. The time taken
by the dipole to complete 20 oscillations is
$(\pi \approx 3)$
A. 18 s
B. 6 s
C. 36 s
D. 12 s

Answer: D

D Watch Video Solution
19. A wire loop that encloses an area of $20 \mathrm{~cm}^{2}$ has a resistance of 10Ω The loop is placed in a magnetic field of 2.4 T with its plane perpendicular to the field . The loop is suddenly removed from the field. How much charge flows past a given point in the wire ?

$$
\begin{aligned}
& \text { A. } 12 \times 10^{-4} \mathrm{C} \\
& \text { B. } 3.6 \times 10^{-1} \mathrm{C} \\
& \text { C. } 4.8 \times 10^{-4} \mathrm{C} \\
& \text { D. } 2.4 \times 10^{-3} \mathrm{C}
\end{aligned}
$$

Answer: C

D Watch Video Solution

20. A coil of inductive reactance $1 / \sqrt{3} \Omega$ and resistance 1Ω is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$
A.C. supply. The time lag between maximum voltage and current is
A. $\frac{1}{200} s$
B. $\frac{1}{300} s$
C. $\frac{1}{500} s$

D. $\frac{1}{600} s$

Answer: D

D Watch Video Solution

21. An eagle flies at constant velocity horizontally across the sky, carrying a mouse and releases the mouse while in flight. From
the eagle's perspective , the mouse falls
vertically with speed v_{1} From an observer on
the ground's perspective, the mouse falls at
an angle with speed v_{2} what is the speed of
the eagle with respect to the observer on the ground ?
A. $v_{1}+v_{2}$
B. $v_{1}-v_{2}$
C. $\sqrt{v_{1}^{2}-v_{2}^{2}}$
D. $\sqrt{v_{2}^{2}-v_{1}^{2}}$

Answer: D

D Watch Video Solution
22. In the given figure, if the velocity of the block C at a particular instant is $-20 m s^{-1} \widehat{J}$, then the velocity of the $\operatorname{rod}(A)$ that instant will be : (string is attached to wedge)

A. $15 m s^{-1} \hat{j}$
B. $-15 m s^{-1} \hat{j}$

C. $20 m s^{-1} \hat{j}$

$$
\text { D. }-20 m s^{-1} \hat{j}
$$

Answer: A

- Watch Video Solution

23. A system is shown in fig. Assume that the
cylinder remains in contact with the two
wedge. Then the velocity of cylinder is

A. $\sqrt{(19-4) \sqrt{3}} \frac{u}{2} m s^{-1}$
B. $\frac{\sqrt{13 u}}{2} m s^{-1}$
C. $\sqrt{3} u m s^{-1}$
D. $\sqrt{7} u m s^{-1}$

Answer: D

D Watch Video Solution

24. During β^{-}emission
A.A neutron in the nucleus decays
emitting an electron
B. An electron already present within the nucleus is ejected
C. A part of the binding energy of the nucleus is converted into an electron
D. A proton in the nucleus decays emitting
an electron

Answer: A

D Watch Video Solution
25. A nuclear transformation is denoted by
$X(n, \alpha) \rightarrow{ }_{3}^{7} L i$. Which of the following is
the nucleus of element X
A. ${ }_{5} B e^{11}$
B. ${ }_{5} B^{10}$
C. ${ }_{5} B^{9}$
D. ${ }_{6} C^{12}$

Answer: B

D Watch Video Solution
26. Block A is hanging from a vertical spring and is at rest. Block B strikes the block A with velocity v and sticks to it. Then the value of v
for which the spring just attains natural length is

A. $\sqrt{\frac{60 m g^{2}}{k}}$
B. $\sqrt{\frac{6 m g^{2}}{k}}$
C. $\sqrt{\frac{10 m g^{2}}{k}}$
D. None of these

Answer: B

- Watch Video Solution

27. If k_{s} and k_{p} respectively are effective spring constant in series and parallel combination of
springs as shown in figure, find $\frac{k_{s}}{k_{p}}$.

9
A. $\frac{}{2}$
B. $\frac{3}{7}$
C. $\frac{2}{9}$
D. $\frac{7}{3}$

Answer: C

D Watch Video Solution

28. A plane electromagnetic wave of wave intensity $6 W / m^{2}$ strikes a small mirror of area $40 \mathrm{~cm}(2)$, held perpendicular to the
transferred by the wave to the mirror each second will be

> A. $6.4 \times 10^{-7} \mathrm{kgms}^{-1}$
> B. $4.8 \times 10^{-8} \mathrm{kgms}^{-1}$
> C. $3.2 \times 10^{-9} \mathrm{kgms}^{-1}$
> D. $1.6 \times 10^{-10} \mathrm{kgms}^{-1}$

Answer: D

- Watch Video Solution

29. If the kinetic energy of a free electron doubles, its de-Broglie wavelength changes
by the factor
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: C

- Watch Video Solution

30. A frame made of metalic wire enclosing a surface area A is covered with a soap film. If the area of the frame of metallic wire is reduced by 50% the energy of the soap film will be changed by:
A. 100%
B. 75%
C. 50%
D. 25%

Answer: C
31. In turbulent flow the velocity of the liquid molecules in contact with the walls of the tube.
A. zero
B. maximum
C. in between zero and maximum
D. equal to critical velocity

- Watch Video Solution

32. A person can see objects clearly only when
they lie between 50 cm and 400 cm from his eyes. In order to increase the maximum distance of distinct vision to infinity, the type and power of the correcting lens, the person has to use, will be
A. Convex,$+2.25 D$
B. Concave , $-0.25 D$
C. Concave , $-0.2 D$

D. Convex,$+0.15 D$

Answer: B

D Watch Video Solution

33. A concave mirror of focal length f produces a real image n times the size of the object. What is the distance of the object from the mirror?

$$
\text { A. }(P-1) f
$$

B. $(P+1) f$
C. $\left(\frac{P-1}{P}\right) f$
D. $\left(\frac{P+1}{P}\right) f$

Answer: D

D Watch Video Solution

34. A circular disc of radius R and thickness $\frac{R}{6}$ has moment of inertia about an axis passing through its centre and perpendicular to its plane. It is melted and recasted into a
solid sphere. The moment of inertia of the
sphere about its diameter as axis of rotation is
A. $\frac{I}{5}$
B. $\frac{I}{6}$
C. $\frac{I}{32}$
D. $\frac{I}{64}$

Answer: A

D Watch Video Solution
35. A sphere and a hollow cylinder roll without
slipping down two separate inclined planes
and travel the same direction in the same
time. If the angle of the plane dowm which the
sphere rolls is 30°, the angle of the other pane is
A. 60°
B. 53°
C. 37°
D. 45°

Answer: D

D Watch Video Solution

36. In a common base transistor circuit, I_{C} is
the Output current and I_{E} is the input current. The current gain α is
A. Greater than one
B. Less than one
C. Equal to one
D. None of these

Answer: B

D Watch Video Solution

37. In a reverse biased diode, when the applied
voltage changes by $1 V$, the current is found to
change by $0.5 \mu A$. The reversebiase resistance of the diode is
A. $2 \times 10^{5} \Omega$
B. $2 \times 10^{6} \Omega$
C. 200Ω
D. 2Ω

Answer: B

D Watch Video Solution

38. Two moles of oxygen are mixed with eight moles of helium. The effective specific heat of the mixture at constant volume is

A. 1.3R

B. 1.4 R
C. 1.7 R
D. 1.9 R

Answer: C

D Watch Video Solution

39. A unit of area, often used in measuring
land areas, is the hectare defined as $10^{4} m^{2} \mathrm{An}$ open-pit coal mine consumes 75 hectares of
land, down to a depth of 26 m , each year. What
volume of earth, in a cubic kilometre, is

removed in this time?

A. 0.01
B. 0.02
C. 0.03
D. 0.04

Answer: B
(Watch Video Solution
40. In Young's double slit experiment
A. The frings width will decrease
B. The fringe width will increase
C. The fringe width will increase
D. There will be no fringe

Answer: A
41. How does the angular width of principal maximum in the diffraction pattern vary with the width of slit?

A. Principal maximum increases on

increasing the width of slit
B. Principal maximum decreases on
decreasing the width of slit
C. Principal maximum increases on
decreasing the width of slit
D. None of these

Answer: C

- Watch Video Solution

42. When the observer moves towards the stationary source with velocity, v_{1}, the apparent frequency of emitted note is f_{1}. When the observer moves away from the source with velocity v_{1}, the apparent
frequency is f_{2}. If v is the velocity of sound in air and $\frac{f_{1}}{f_{2}}=2$,then $\frac{v}{v_{1}}=$?
A. 2
B. 3
C. 4
D. 5

Answer: B

D Watch Video Solution

43. A whistle producing sound waves of frequencies 9500 Hz and above is approaching a stationary person with speed $v m s^{-1}$. The
velocity of sound in air is $300 m s^{-1}$. If the person can hear frequencies upto a maximum of $10,000 \mathrm{~Hz}$. The maximum value of v upto which he can hear whistle is
A. $15 \sqrt{2} m s^{-1}$
B. $15 m s^{-1}$
C. $30 m s^{-1}$
D. none of these

Answer: B
44. A body moves from a position $\overrightarrow{r_{1}}=(2 \hat{i}-3 \hat{j}-4 \hat{k}) \quad \mathrm{m} \quad$ to \quad a position $\overrightarrow{r_{2}}=(3 \hat{i}-4 \hat{j}+5 \hat{k}) m$ under the influence of a constant force $\vec{F}=(4 \hat{i}+\hat{j}+6 \hat{k}) N$. The work done by the force is :
A. 57 J
B. 58 J
C. 59 J
D. 60 J

Answer: A

D Watch Video Solution

45. In each heart beat, a heart pumps 80 ml blood at an average pressure of 100 ml of Hg .

What will be the power output of the herat?
(Assume 60 heart beat per minute
A. 1.0 W
B. 1.06 W
C. 1.12 W
D. 2.16 W

Answer: B

- Watch Video Solution

