©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 88

Physics

1. An electron with kinetic energy 10 eV is
incident on a hydrogen atom in its ground
state. The collision
A. Must be elastic
B. May be partially elastic
C. Must be completely inelastic
D. May be completely inelastic

Answer: A

D Watch Video Solution
2. The speed of an electron in the orbit of hydrogen atom in the ground state is
A. C
B. $c / 2$
C. $c / 10$
D. $c / 137$

Answer: D

D Watch Video Solution

3. A hollow hemisphere of mass 4 m is placed as shown in figure. Two point masses m each are fixed to it at points P and Q on
diametrically opposite points. The position of center of mass of the system is

A. $\left(0,-\frac{R}{2}\right)$
B. $\left(0,-\frac{R}{3}\right)$
C. $\left(0,-\frac{2 R}{3}\right)$
D. $\left(0,-\frac{R}{4}\right)$

Answer: B

D Watch Video Solution

4. A cart loaded with sand having total mass
$m_{0}=1800 \mathrm{~kg}$ moves on a straight horizontal
road starting from rest under the action of a
force of 120 N . The sand spills through a small
hole hole in the bottom at a rate of $0.5 \mathrm{~kg} / \mathrm{sec}$.

What will be the vertically of cart after 20 min ?
A. $120 \mathrm{~m} / \mathrm{s}$
B. $60 \mathrm{~m} / \mathrm{s}$
C. $80 \mathrm{~m} / \mathrm{s}$
D. $40 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution
5. A particle moves along a circle of radius r
with constant tangential acceleration. If the
velocity of the particle is v at the end of
started, then the tangential acceleration is
A. $\frac{v^{2}}{8 \pi r}$
B. $\frac{v^{2}}{6 \pi r}$
C. $\frac{v^{2}}{4 \pi r}$
D. $\frac{v^{2}}{10 \pi r}$

Answer: A
(Watch Video Solution
6. Two tangent galvanometers having coils of
the same radius are connected in series. A
current flowing in them produces deflections of 60° and 45° respectively. The ratio of the number of turns in the coils is
A. $\left(\frac{4}{3}\right)$
B. $\frac{\sqrt{3}+1}{1}$
C. $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)$
D. $\frac{\sqrt{3}}{1}$

- Watch Video Solution

7. Four resistence of $10 \Omega, 60 \Omega, 100 \Omega$ and 200Ω, respectively taken in order are used to form a

Wheatstone's bridge . A 15 V battery is connected to the ends of a 200Ω resistance, the current through it will be

$$
\begin{aligned}
& \text { А. } 7.5 \times 10^{-5} A \\
& \text { в. } 7.5 \times 10^{-4} A \\
& \text { С. } 7.5 \times 10^{-3} A
\end{aligned}
$$

D. $7.5 \times 10^{-2} A$

Answer: D

D Watch Video Solution

8. A heater coil is cut into two equal parts and
only one part is now used in the heater. The
heat generated will now be
A. One fourth
B. Halved

C. Doubled

D. Four times

Answer: C

- Watch Video Solution

9. Coulomb's law is valid for

A. charged particles separated by atomic
distances $\left(10^{-11} m\right)$.
B. charged particles separated by atomic distances $\left(10^{-15} m\right)$.
C. charged as well as uncharged particles
separated by any distances.
D. charged particles separated by any distance.

Answer: D

D Watch Video Solution

10. Two isolated metallic solid spheres of radii
R and $2 R$ are charged such that both of these
have same charge density σ. The spheres are located far away from each other and connected by a thin conducting wire. Find the new charge density on the bigger sphere.
A. $\frac{3 \sigma}{2}$
B. $\frac{5 \sigma}{6}$
C. $\frac{6 \sigma}{5}$
D. $\frac{2 \sigma}{3}$

Answer: B

- Watch Video Solution

11. In a potentiometer experiment the balancing length with a cell is 560 cm . When an external resistance of 10Ω is connected in parallel to the cell, the balancing length changes by 60 cm . Find the internal resistance of the cell.
A. 1.4Ω
B. 1.6Ω
C. 1.12Ω
D. 1.2Ω

Answer: D

D Watch Video Solution

12. In a series LCR circuit, an alternating emf
(V) and current (I) are given by the equation
$V=V_{0} \sin \omega t, I=I_{0} \sin \left(\omega t+\frac{\pi}{3}\right)$
The
average power dissipated in the circuit over a
cycle of AC is
A. $\frac{V_{0} I_{0}}{2}$
B. $\frac{V_{0} I_{0}}{4}$
C. $\frac{\sqrt{3}}{2} V_{0} I_{0}$
D. Zero

Answer: B

D Watch Video Solution
13. The Value of g on the surface of earth is smallest at the equator because
A. The centripetal force maximum at equator
B. The centripetal force is least at equator
C. The centrifugal force is maximum at
equator
D. The angular speed of earth is least at
equator

Answer: C

D Watch Video Solution

14. The distance of geostationary satellite from the centre of the earth (radius R) is nearest to
A. 18 R
B. 10 R
C. 7 R
D. 5 R

Answer: C

- Watch Video Solution

15. One end of a copper rod of length 1.0 m and area of cross-section 10^{-3} is immersed in boiling water and the other end in ice. If the coefficient of thermal conductivity of copper is
$92 \mathrm{cal} / \mathrm{m}-s-.{ }^{\circ} C$ and the latent heat of ice is $8 \times 10^{4} \mathrm{cal} / \mathrm{kg}$, then the amount of ice which will melt in one minute is
A. $9.2 \times 10^{-3} \mathrm{~kg}$
B. $8 \times 10^{-3} \mathrm{~kg}$
C. $6.9 \times 10^{-3} \mathrm{~kg}$
D. $5.4 \times 10^{-3} \mathrm{~kg}$

Answer: C

D Watch Video Solution
16. The pressure exerted by the gas on the walls of a container is measured by
A. $\left[\frac{1}{3}\right]^{r d}$ of kinetic energy per unit volume of a gas
B. $\left[\frac{2}{3}\right]^{r d}$ of kinetic energy per unit volume of a gas
C. $\left[\frac{3}{4}\right]^{t h}$ of kinetic energy per unit volume of a gas
D. $\frac{2}{3} \times$ of kinetic energy per unit volume of a gas

Answer: B
17. If the ratio of specific heat of a gas of constant pressure to that at constant volume is γ, the change in internal energy of the mass
of gas, when the volume changes from V to
$2 V$ at constant pressure p is
A. $R /(\gamma-1)$
B. PV
C. $p V /(\gamma-1)$
D. $\gamma p V /(\gamma-1)$

Answer: C

- Watch Video Solution

18. A jet plane having a wing-span of 25 m is travelling horizontally towards East with a speed of $3600 \mathrm{~km} / \mathrm{hr}$. If the Earth's magnetic field at the location is $4 \times \times 10^{-4} \mathrm{~T}$ and the angle of dip is 30°, then the potential difference between the ends of the wing is

$$
\text { A. } 4 \mathrm{~V}
$$

B. 5 V
C. 2 V
D. 2.5 V

Answer: B

- Watch Video Solution

19. A uniform current carrying ring of mass m
and radius R is connected by a massless
string as shown in Fig. 1.142. A uniform magnetic field B_{0} exists in the region to keep
the ring in horizontal position, then the
current in the ring is (l=length of string)

A. $\frac{m g}{\pi R B_{0}}$
B. $\frac{m g}{R B_{0}}$
C. $\frac{m g}{3 \pi R B_{0}}$
D. $\frac{m g l}{\pi R^{2} B_{0}}$

Answer: A

D Watch Video Solution

20. For a particle moving in a straight line, the displacement of the particle at time t is given by
$S=t^{3}-6 t^{2}+3 t+7$

What is the velocity of the particle when its acceleration is zero?
A. $-9 m s^{-1}$
B. $-12 m s^{-1}$
C. $3 m s^{-1}$
D. $42 m s^{-1}$

Answer: A
(Watch Video Solution
21. A train of 150 m length is going toward north direction at a speed of $10 \mathrm{~ms}^{-1}$. A parrot flies at a speed of $5 m s^{-1}$ toward south direction parallel to the railway track. The time taken by the parrot to cross the train is equal to.
A. 12 s
B. 8 s
C. 15 s
D. 10 s

Answer: D

D Watch Video Solution

22. At time t second, a particle of mass 3 kg
has position vector r metre, where
$r=3 t \hat{i}-4 \cos t \hat{j}$. Find the impulse of the force during the time interval $0 \leq t \leq \frac{\pi}{2}$
A. $12 \widehat{J} N-s$
B. $9 \widehat{J} N-s$
C. $4 \widehat{J} N-s$
D. $14 \widehat{J} N-s$

Answer: A

D Watch Video Solution

23. The acceleration of the 500 g block in
figure is

A. $\frac{6 g}{13}$ downwards
B. $\frac{7 g}{13}$ downwards
C. $\frac{8 g}{13}$ downwards
D. $\frac{9 g}{13}$ downwards

Answer: D

D Watch Video Solution

24. The mean lives of a radioactive substance
are 1620 years and 405 years for α emission
and β emission respectively. Find out the time
during which three fourth of a sample will decay if it is decaying both by α-emission and β-emission simultaneously. $\left(\log _{e} 4=1.386\right)$.
A. 449 yrs
B. 399 yrs
C. 549 yrs
D. 579 yrs

Answer: A

D Watch Video Solution
25. The energy released during the fission of

1 kg of U^{235} is a E_{1} and that product during
the fusion of 1 kg of hydrogen is E_{2}. If energy
released per fission of Uranium - 235 is 200
MeV and that per fusion of hydrogen is 24.7
MeV , then the ratio $\frac{E_{2}}{E_{1}}$ is
A. 2
B. 7
C. 10
D. 20

Answer: B

D Watch Video Solution

26. A particle executing S.H.M. having amplitude 0.01 m and frequency 60 Hz . Determine maximum acceleration of particle.
A. $144 \pi^{2} m / s^{2}$
B. $120 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$
C. $80 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$
D. $60 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$

- Watch Video Solution

27. The graph between the length and square of the period of a simple pendulum is a
A. elliptical
B. hyperbola
C. parabola
D. circular

Answer: C

- Watch Video Solution

28. Threshold wavelength for photoelectric effect on sodium is $5000 \AA$. Its work function is
A. 7.5 eV
B. 2.5 eV
C. 10 eV
D. 5.0 eV

Answer: B

- Watch Video Solution

29. According to Einstein's photoelectric equation, the plot of the K.E. of the emitted photoelectrons from ametal vs the frequency of incident radiation gives a straight line where slope
A. Depends on the nature of the metal
B. Depends on the intensity of the radiation
C. Depends both on the intensity of the radiation and the metal used
D. Is the same for all metals and independent of the intensity of the radiation

Answer: D

30. There are two identical small holes on the opposite sides of a tank containing a liquid.

The tank is open at the top. The difference in height between the two holes is h. As the liquid comes out of the two holes. The tank will experience a net horizontal force

proportional to.

A. $h^{1 / 2}$
B. h
C. $h^{3 / 2}$
D. h^{2}

Answer: B

D Watch Video Solution

31. A body of density d is counterpoised by Mg of weights of density d_{1} in air of density d.

Then the true mass of the body is
A. M
B. $M\left(1-\frac{d}{d_{2}}\right)$
C. $M\left(1-\frac{d}{d_{1}}\right)$
D. $M\left(\frac{1-\frac{d}{d_{2}}}{1-\frac{d}{d_{1}}}\right)$

Answer: D

- Watch Video Solution

Two converging lenses have focal length f_{1} and $f_{2}\left(f_{1} \gg f_{2}\right)$. The optical axis of the
two lenses coincide. This lens system is used to from an image of real object. It is observed that final magnification of the image does not depend on the distance x. Whole arrangement is shown in figure. Final magnification is :

$$
\begin{aligned}
& \text { A. } \frac{f_{1} f_{2}}{f_{1}+f_{2}} \\
& \text { B. } f_{1}+f_{2} \\
& \text { C. }\left|f_{1}-f_{2}\right| \\
& \text { D. } \frac{\left(f_{1}-f_{2}\right)^{2}}{f_{1}}
\end{aligned}
$$

Answer: B
33. The refractive index of water is 1.33 . What will be the speed of light in water
A. $3 \times 10^{8} m s^{-1}$
B. $4 \times 10^{8} \mathrm{~ms}^{-1}$
C. $1.33 \times 10^{8} \mathrm{~ms}^{-1}$
D. $2.26 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: D
34. A ring of radius R rolls without slipping on
a rough horizontal surface with a constant
velocity. The radius of curvature of the path
followed by any particle of the ring at the highest point of its path will be :
A. 5 R
B. 2 R
C. 4 R
D. None of these

Answer: C

D Watch Video Solution

35. For the same total mass, which of the following will have the largest moment of inertia about an axis passing through the
centre of mass and perpendicular to the plane of the body
A. A disc of radius a
B. A ring of radius a
C. A square lamina of side 2 a

D. Four rods forming a square of side 2 a

Answer: D

D Watch Video Solution

36. The V-I characteristic of a diode is shown in the figure. The ratio of forward to reverse bias resistance is

A. 10
B. 10^{-6}
C. 10^{6}
D. 100

Answer: B

D Watch Video Solution

37. In a CE transistor amplifier, the audio signal
voltage across the collector resistance of $2 k \Omega$
is $2 V$. If the base resistance is $1 k \Omega$ and the
current amplification of the transistor is 100 ,
the input signal voltage is:

A. 1 mV

B. 10 mV

C. 0.1 V
D. 1 V

Answer: B

D Watch Video Solution

38. Volume-temperature graph at atmospheric pressure for a monoatomic gas
$\left(V\right.$ in m^{3}, T in $\left.{ }^{\circ} C\right)$ is

Answer: B

39. When the voltage and current in a conductor are measured as
$(100 \pm 4) V$ and $(5 \pm 0.2) \quad$ A, then the percentage of error in the calculation of resistance is
A. 8%
B. 4%
C. 20%
D. 10%

Answer: A

- Watch Video Solution

40. The distance between two coherent sources is 1 mm . The screen is placed at a distance of 1 m from the sources. If the distance of the third bright fringe is 1.2 mm from the central fringe, the wavelength of light used is
A. $4000 \AA$
B. $5000 \AA$
C. $6000 \AA$
D. $7200 \AA$

Answer: A

D Watch Video Solution

41. How will the diffraction pattern of single
slit change when yellow light is replaced by blue light? The fringe will be
A. Darker
B. Brighter
C. Wider
D. Narrower

Answer: D

D Watch Video Solution
42. When the length of the vibrating segment of a
sonometer wire is increased by 1% the
percentage
change in its frequency is
A. $\frac{100}{101}$
B. $\frac{99}{100}$
C. 1
D. 2

Answer: C

D Watch Video Solution
43. With the propagation of a longitudinal wave through a material medium, the quantities transmitted in the propagation direction are
A. energy , momentum and mass
B. energy
C. energy and mass
D. energy and linear momentum

Answer: B
44. A pump motor is used to deliver water at a certain rate from a given pipe. To obtain ' n ' times water from the same pipe in the same time, by what amount the power of the motor should be increased?
A. $n^{1 / 2}$
B. n^{2}
C. n^{3}
D. n

Answer: C

- Watch Video Solution

45. A block of mass 2 kg is kept at origin at $\mathrm{t}=$

0 and is having velocity $4 \sqrt{5} \mathrm{~m} / \mathrm{s}$ in positive x

- direction. The only force on it is a conservative and its potential energy is defined as $U=-x^{3}+6 x^{2}+15$ (SI units).

Its velocity when the force acting on it is minimum (after the time $t=0$) is
A. $8 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $10 \sqrt{24} \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

