©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 91

Physics

1. The electron in a hydrogen atom makes a
transition $n_{1} \rightarrow n_{2}$ wher n_{1} and n_{2} are the principal quantum numbers of the two states.

Assume the Bohr model to be valid the time period of the electron in the initial state is eight times that in the final state. The possible values of n_{1} and n_{2} are :

$$
\begin{aligned}
& \text { A. } n_{1}=6, n_{2}=3 \\
& \text { В. } n_{1}=8, n_{2}=2 \\
& \text { C. } n_{1}=n_{2}=1 \\
& \text { D. } n_{1}=8, n_{2}=1
\end{aligned}
$$

Answer: A

2. The ionization energy of 10 times ionized sodium atom is

$$
\begin{aligned}
& \text { A. } \frac{13.6}{11} \mathrm{eV} \\
& \text { B. } \frac{13.6}{112} \mathrm{eV} \\
& \text { C. } 13.6 \times(11)^{2} \mathrm{eV} \\
& \text { D. } 13.6 \mathrm{eV}
\end{aligned}
$$

Answer: C
3. A small block of mass M moves with velocity
$5 \mathrm{~m} / \mathrm{s}$ towards an another block of same mass
M placed at a distance of 2 m on a rough
horizontal surface . Coefficient of friction between the blocks and ground is 0.25 .

Collision between the two blocks is elastic,
the separation between the blocks, when
both of them come to rest, is ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 3 m
B. 4 m
C. 2 m

D. 1.5 m

Answer: A

D Watch Video Solution

4. Two identical spheres A, B are in a smooth
horizontal circular smooth groove at opposite ends of a diameter. A is projected along the groove and it impinges on B in a time interval
T. Let e be the coefficient of restitution, the

A. $\frac{2 \pi t}{e}$
B. $\frac{\pi t}{e}$
C. $\frac{t}{e}$
D. $\frac{2 t}{e}$

Answer: D

- Watch Video Solution

5. A stone of mass 1 kg tied at the end of a string of length 1 m and is whirled in a verticle circle at a constant speed of $3 m s^{-1}$. The tension in the string will be 19 N when the stone is $\left(g=10 m s^{-1}\right)$
A. Top of the circle
B. Bottom of the circle

C. Half way down

D. None of these

Answer: A

- Watch Video Solution

6. A magnet of dipole moment $2 A m^{2}$ is deflected through 30° from magnetic meridian. The required deflecting torque is

$$
\left(B_{H}=0.4 \times 10^{-4} T\right)
$$

A. $0.4 \times 10^{-4} \mathrm{Nm}$
B. 0.4 Nm
C. $0.2 \times 10^{-4} \mathrm{Nm}$
D. 0.8 Nm

Answer: A

D Watch Video Solution

7. A mete bridge is used to determine the resistance of an unknown wire by measuring
the balance point length l . If the wire is
replaced by another wire of same material but
with double the length and half the thickness
the balancing point is expected to be

> A. $\frac{1}{8 l}$
> B. $\frac{1}{4 l}$
> C. $8 l$
> D. $16 l$

Answer: C

D Watch Video Solution
8. All the edges of a block with parallel faces are unequal. Its longest edge is twice its shortest edge. The ratio of the maximum to minimum resistance between parallel faces is.
A. 8
B. 4
C. 2
D. 1

Answer: B

- Watch Video Solution

9. If V and u are electric potential and energy density, respectively, at a distance r from a positive point charge, then which of the following graph is correct ?

Answer: C

- Watch Video Solution

10. The minimum value of effective capacitance
that can be obtained by combining 3
capacitors of capacitances $1 \mathrm{pF}, 2 \mathrm{pF}$ and 4 pF is
A. $\frac{4}{7} \mathrm{pF}$
B. 1 pF
C. 2 pF
D. $\frac{7}{4} \mathrm{pE}$

Answer: A

- Watch Video Solution

11. A coil of wire of a certain radius has 600 turns and a self-inductance of 108 mH . The self-inductance of a $2^{\text {nd }}$ similar coil of 500 turns will be

A. 80 mH

B. 75 mH
C. 108 mH
D. 90 mH

Answer: B

D Watch Video Solution

12. A transformer has 230 volts applied to the primary and gives 4.6 V in the secondary. The

a current of 5A. The current in the primary is

A. 0.1
B. 1.0
C. 10
D. 250

Answer: A
(Watch Video Solution

13. If radius of earth is R then the height ' h ' at

 which value of ' g ' becomes one-fourth isA. $\frac{R}{8}$
B. R
C. $\frac{3 R}{4}$
D. $\frac{R}{2}$

Answer: B

D Watch Video Solution
14. The depth ' d ' at which the value of acceleration due to gravity becomes $\frac{1}{n}$ times the value at the earth's surface is ($R=$ radius of earth)

$$
\begin{aligned}
& \text { A. } d=R\left(\frac{n}{n-1}\right) \\
& \text { B. } d=R\left(\frac{n-1}{2 n}\right) \\
& \text { C. } d=R\left(\frac{n-1}{n}\right) \\
& \text { D. } d=R^{2}\left(\frac{n-1}{n}\right)
\end{aligned}
$$

Answer: C

15. The spectral energy distribution of the sun
has a maximum at $4754 \AA$. If the temperature of the sun is 6050 K , what is the temperature of a star for which this maximum is at $9506 \AA$?
A. 3025 K
B. 2785 K
C. 3240 K
D. 4015 K

- Watch Video Solution

16. The relation between U, P and V for an iodeal gas is $\mathrm{U}=2+3 \mathrm{PV}$. What is the atomicity of the gas.
A. Monoatomic
B. Diatomic
C. Neither monatomic nor diatomic
D. Either monatomic or diatomic
17. The pressure P , Volume V and temperature

T of a gas in the jar A and the other gas in the jar B at pressure $2 P$, volume $V / 4$ and temperature $2 T$, then the ratio of the number of molecules in the jar A and B will be
A. 1:1
B. 1:2
C. 2:1

D. $4: 1$

Answer: D

D Watch Video Solution

18. A rectangular loop carrying a current i is situated near a long straight wire such that the wire is parallel to one of the sides of the loop and is in the plane of the loop. If steady current I is established in the wire as shown
in the figure ,

A. Rotate about an axis parallel to the wire
B. Move away from the wire
C. Move towards the wire
D. Remain stationary

Answer: C

- Watch Video Solution

19. A magnetic needle lying parallel to a magnetic field requires Wunits of work to turn it through 60°. The torque needed to maintain the needle in this position will be
A. $\sqrt{3} W$
B. W
C. $\sqrt{3} \frac{W}{2}$
D. 2 W

Answer: A

- Watch Video Solution

20. If a car covers $\frac{2}{(5)^{t h}}$ of the total distance with v_{1} speed and $\frac{3}{(5)^{t h}}$ distance with v_{2}.

Then average speed is
A. $\frac{5 v_{1} v_{2}}{3 v_{1}+2 v_{2}}$
B. $\frac{v_{1}+v_{2}}{2}$
C. $\frac{1}{2} \sqrt{v_{1} v_{2}}$
D. $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$

Answer: A

D Watch Video Solution

21. From a 10 m high building a ston ' A ' is
dropped, and simultaneously another identical
stone ' B ' is thrown horizontally with an initial
speed of $5 \mathrm{~ms}^{-1}$. Which one of the following statement is true?
A. It is not possible to calculate which one of the two stones will reach the ground first
B. Both the stones ('A' and ' B ') will reach the
ground simultaneously
C. A' stone reaches the ground earlier than
'B'
D. B^{\prime} stone reaches the ground earlier than
'A'
22. The force on a particle of mass $10 g$ is $(\hat{i} 10+\hat{j} 5) \mathrm{N}$ If it starts from rest what would be its position at time $t=5 s$?
A. $12500 \hat{i}+6250 \hat{j} m$
B. $6250 \hat{i}+12500 \hat{j} m$
C. $12500 \hat{i}+12500 \hat{j} m$
D. $6250 \hat{i}+6250 \hat{j} \mathrm{~m}$

- Watch Video Solution

23. An elevator and its load have a total mass
of 800 kg . If the elevator, originally moving downwards at $10 \mathrm{~ms}^{-1}$, is brought to rest with constant deceleration in a distance of 25 m , the tension in the supporting canble will be $\left(g=10 m s^{-2}\right)$
A. 8000 N
B. 1600 N
C. 9600 N

D. 6400 N

Answer: C

D Watch Video Solution

24. The half-life of tritium is 12.5 years. What mass of tritium of initial mass 64 mg will remain undecayed after 50 years?
A. 32 mg
B. 8 mg

C. 16 mg

D. 4 mg

Answer: D

D Watch Video Solution

25. The half life of . $92 U^{238}$ against α-decay is
4.5×10^{9} years. What is the activity of 1 g
sample of ${ }_{.92} U^{238}$?
A. $4.231 \times 10^{4} \mathrm{dps}$
B. $1.721 \times 10^{3} \mathrm{dps}$
C. $1.235 \times 10^{4} \mathrm{dps}$
D. $5.167 \times 10^{3} \mathrm{dps}$

Answer: C

- Watch Video Solution

26. A tunnel is made inside earth passing
throgh centre of earth. A particle is dropped
from the surface of earth. Select the correct

statement:

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{R}{g}}+4 \sqrt{\frac{h}{g}} \\
& \text { B. } 2 \pi \sqrt{\frac{R}{g}}+4 \sqrt{\frac{2 h}{g}} \\
& \text { C. } 2 \pi \sqrt{\frac{R}{g}}+\sqrt{\frac{h}{g}} \\
& \text { D. } 2 \pi \sqrt{\frac{R}{g}}+\sqrt{\frac{2 h}{g}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

27. Two springs of constants k_{1} and k_{2} have equal maximum velocities, when executing simple harmonic motion. The ratio of their amplitudes (masses are equal) will be
A. $\left(\frac{k_{1}}{k_{2}}\right)^{\frac{1}{2}}$
B. $\left(\frac{k_{1}}{k_{2}}\right)$
C. $\left(\frac{k_{2}}{k_{1}}\right)$
D. $\left(\frac{k_{2}}{k_{1}}\right)^{\frac{1}{2}}$

Answer: D

- Watch Video Solution

28. An earth- orbiting satellite has a solar energy collecting panel with total area $5 m^{2}$ If solar radiations are perpendicular and completely absorbed, the average force associated with the radiation pressure is
(Solar constant $=1.4 k W m^{-2}$)
A. $2.33 \times 10^{-3} N$
B. $2.33 \times 10^{-4} N$
C. $2.33 \times 10^{-5} N$
D. $2.33 \times 10^{-6} N$

Answer: C

D Watch Video Solution

29. The fig. shows the variation of photon current with anode potential for a photosensitive surface for three different radiation.

Let I_{a}, I_{b} and I_{c} be the intensities and f_{a}, f_{b} and f_{c} be the frequency for the curves a, b and c respectively.

Photo current

A. $v_{a}=v_{b}$ and $I_{a} \neq I_{b}$
B. $v_{a}=v_{c}$ and $I_{a}=I_{c}$
C. $v_{a}=v_{b}$ and $I_{a}=I_{b}$

$$
\text { D. } v_{b}=v_{c} \text { and } I_{b}=I_{c}
$$

Answer: A

- Watch Video Solution

30. A uniform cylinder of length L and mass M having cross-sectional area A is suspended, with its length vertical, from a fixed point by a massless spring such that it is half submerged in a liquid of density σ at equilibrium position.

The extension x_{0} of the spring when it is in equlibrium is:
A. Mg / K
B. $\left(M \frac{g}{K}\right)(1-L A \sigma / M)$
C. $(M g / K)[1-(L A \sigma / 2 M)]$
D. $M g L A / K \sigma$

Answer: C

- Watch Video Solution

31. The spring balance A reads 2 kg with a block m suspended from it. A balance B reads

5 kg when a beaker with liquid is put on the pan of the balance. The two balances are now so arranged that the hanging mass in inside the liquid in the beaker as shown in the figure. In this situation:

A. The balance A will read more than 2 kg
B. The balance B will read less than 5 kg
C. The balance A will read less than 2 kg
and B will read more than 5 kg
D. The balance A will read more than 2 kg and B will read less than 5 kg

Answer: C

D Watch Video Solution

32. A biconvex lens of focal length 15 cm is in
front of a plane mirror. The distance between
the lens and the mirror is 10 cm . A small object is kept at a distance of 30 cm from the lens.

The final image is
A. Virtual and at a distance of 16 cm from
the mirror

B. Real and at a distance of 16 cm from the

mirror
C. Virtual and at a distance of 20 cm from
the mirror
D. None of the above

Answer: B

D Watch Video Solution

33. A concave mirror is placed on a horizontal table, with its axis directed vertically upwards.

Let O be the pole of the mirror and C its
centre of curvature. A point object is placed at
C. It has a real image, also located at C. If the mirror is now filled with water, the image will be.
A. real, and will remain at C
B. real, and located at a point between C
and ∞
C. virtual, and located at a point between

C and O

D. real, and located at a point between C

Answer: D

- Watch Video Solution

34. A uniform cube of mass m and edge a moves on a horizontal surface along the positive x-axis, with initial velocity v_{0}. Then
A. During motion, $N>\mathrm{mg}$
B. During motion, normal reaction acts on
the centre of mass
C. During motion, the normal reaction
shifts towards positive x - axis from the
centre of mass
D. During motion, normal reaction shifts in
the direction of the forces of friction

Answer: C

D Watch Video Solution

35. A disc of mass 4.8 kg and radius 1 m is
rolling on a horizontal surface without sliding
with angular velocity of 600 rotations $/ \mathrm{min}$.
What is the total kinetic energy of the disc ?
A. 360 J
B. $1440 \pi^{2} J$
C. $4000 \pi^{2} J$
D. $600 \pi^{2} J$

Answer: A
36. For the circuit shown in the figure :

A. Current through Zener diode is 4 mA
B. Current through Zener diode is 9 mA

C . The output voltage is 60 V
D. The output voltage is 40 V

Answer: B

D Watch Video Solution

37. A $G e$ specimen is dopped with $A l$. The concentration of acceptor atoms is
$\sim 10^{21}$ atoms $/ \mathrm{m}^{3}$. Given that the intrinsic concentration of electron hole pairs is
$\sim 10^{19} / \mathrm{m}^{3}$, the concentration of electron in the speciman is

$$
\text { A. } 10^{17} m^{-3}
$$

B. $10^{15} \mathrm{~m}^{-3}$
C. $10^{4} m^{-3}$
D. $10^{2} m^{-3}$

Answer: A

- Watch Video Solution

The potential energy U between two molecules as a function of the distance X between them has been shown in the figure.

The two molecules are
A. Attracted when x lies between A and B
and are repelled when x lies between B
B. Attracted when x lies between B and C and are repelled when x lies between A and B
C. Attracted when they reach B
D. repelled when they reach B

Answer: B

39. In the relation $\frac{d y}{d t}=2 \omega \sin \left(\omega t+\phi_{0}\right)$, the dimensional formula for $\omega t+\phi_{0}$ is
A. $[M L T]$
B. $\left[M L T^{0}\right]$
C. $\left[M L^{0} T 0\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

Answer: D

40. In Young's double slit experiment, two wavelength $\lambda_{1}=780 \mathrm{~nm}$ and $\lambda_{2}=520 \mathrm{~nm}$ are used to obtain interference fringes. If the nth bright band due to λ_{1} coincides with $(n+1)^{t h}$ bright band due to λ_{2} then the value of n is
A. 4
B. 3
C. 2
D. 6

Answer: C

D Watch Video Solution

41. Resolving power of telescope increases
when
A. wavelength of light decreases.
B. wavelength of light increases.
C. focal length of eye- piece increases
D. focal length of eye - piece decreases.

Answer: A

- Watch Video Solution

42. Two periodic waves of intensities I_{1} and I_{2}
pass through a region at the same time in the
same direction. The sum of the maximum and minimum intensities is
A. $I_{1}+I_{2}$
B. $\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)$
c. $\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$

D. $2\left(I_{1}+I_{2}\right)$

Answer: D

D Watch Video Solution

43. A car is moving towards a high cliff. The car
driver sounds a horn of frequency f. The reflected sound heard by the driver has a frequency $2 f$. if v be the velocity of sound, then the velocity of the car, in the same velocity units, will be
A. $\frac{v}{\sqrt{2}}$
B. $\frac{v}{3}$
C. $\frac{v}{4}$
D. $\frac{v}{2}$

Answer: B

D Watch Video Solution

44. A small object of mass of 100 g moves in a circular path. At a given instant velocity of the object is $10 \hat{i} m s^{-1}$ and acceleration is
$(20 \hat{i}+10 \hat{j}) \mathrm{ms}^{-2}$. At this instant of time. the rate of change of kinetic energy of the object is
A. $200 \mathrm{~kg} \mathrm{~m}^{2} s^{-2}$
B. $300 \mathrm{~kg} \mathrm{~m}^{2} s^{-2}$
C. $10000 \mathrm{~kg} \mathrm{~m}^{2} s^{-2}$
D. $20 \mathrm{~kg} \mathrm{~m}^{2} s^{-2}$

Answer: D

D Watch Video Solution
45. A uniform force of 4 N acts on a body of mass 10 kg for a distance of 2.0 m . The kinetic energy acquired by the body is
A. 16 J
B. $32 \times 10^{8} \mathrm{erg}$
C. 8 J
D. 32 erg

Answer: C
(Watch Video Solution
\square

