©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 92

Physics

1. When electron jumps from $n=4$ level to $n=1$
level,the angular momentum of electron
changes by
A. $\frac{h}{2 \pi}$
B. $\frac{2 h}{2 \pi}$
C. $\frac{3 h}{2 \pi}$
D. $\frac{4 h}{2 \pi}$

Answer: C

D Watch Video Solution

2. When a hydrogen atom is raised from the ground state to an excited state
A. Potential energy increases and kinetic
energy decreases
B. Kinetic energy increases and potential
energy decreases
C. Both KE and PE increases
D. Both KE and PE decreases

Answer: A

D Watch Video Solution

3. A body of mass m_{1} collides elastically with another body of mass m_{2} at rest. If the velocity of m_{1} after collision is $\frac{2}{3}$ times its initial velocity, the ratio of their masses is :
A. 1:5
B. 5:1
C. 5:2
D. 2:5

Answer: B
4. A particle at rest suddenly disintegrates into two particles of equal masses which start moving. The two fragments will
A. Move in the same direction with equal
speeds
B. Move in any directions with any speed
C. Move in opposite directions with equal
speeds
D. Move in opposite directions with

unequal speeds

Answer: C

D Watch Video Solution

5. The figure shows the total acceleration $a=32 m s^{-2}$ of a moving particle moving clockwise in a circle of radius $\mathrm{R}=1 \mathrm{~m}$. What are the centripetal acceleration a and speed of
the particle at the given instant?

A. $16 \sqrt{3} m s^{-2}, 4 \sqrt{3} m s^{-1}$
B. $16 \sqrt{3} m s^{-2}, 4 m s^{-1}$
C. $16 m s^{-2}, 16 m s^{-1}$
D. $16 m s^{-2}, 4 m s^{-1}$

Answer: D

D Watch Video Solution

6. A short bar magnet has a magnetic moment
of $0.48 J T^{-1}$. Give the direction and
magnitude of the magnetic field produced by
the magnet at a distance of 10 cm from the
centre of the magnet on (a) the axis, (b) the
equitorial lines (normal bisector) of the magnet.
A. $0.96 \times 10^{-4} T$
B. $2.16 \times 10^{-4} T$
C. $0.96 \times 10^{-3} T$
D. $2.16 \times 10^{-3} T$

Answer: A

D Watch Video Solution

7. Two unknown resistances are connected in two gaps of a meter-bridge. The null point is obtained at 40 cm from left end. A 30Ω
resistance is connected in series with the smaller of the two resistances, the null point shifts by 20 cm to the right end. The value of smaller resistance in Ω is
A. 12
B. 24
C. 36
D. 48

Answer: B
8. A long resistance wire is divided into $2 n$ parts. Then n parts are connected in series and the other n parts in parallel separately. Both combinations are connected to identical supplies. Then the ratio of heat produced in series to parallel combinations will be -
A. $1: 1$
B. 1: n^{2}
C. $1: n^{4}$
D. $n^{2}: 1$

Answer: B

- Watch Video Solution

9. A charge q is placed at the centre of the line
joining two equal charges Q to establish equilibrium. The system of three charges will be in equilibrium if q is equal to

> A. $+\frac{Q}{4}$
> B. $-\frac{Q}{2}$
> С. $+\frac{Q}{2}$
D. $-\frac{Q}{4}$

Answer: D

D Watch Video Solution

10. Two point charges q and $-q$ are at positions ($0,0, d$) and ($0,0,-d$) respectively . What is the electric field at $(a, 0,0)$?

$$
\begin{aligned}
& \text { A. } \frac{2 q d}{4 \pi \varepsilon_{0}\left(d^{2}+a^{2}\right)^{3 / 2}} \hat{k} \\
& \text { B. } \frac{q d}{4 \pi \varepsilon_{0}\left(d^{2}+a^{2}\right)^{3 / 2}} \hat{k}
\end{aligned}
$$

> C. $\frac{-2 q d}{4 \pi \varepsilon_{0}\left(d^{2}+a^{2}\right)^{3 / 2}} \hat{k}$ D. $\frac{-q d}{4 \pi \varepsilon_{0}\left(d^{2}+a^{2}\right)^{3 / 2}} \hat{k}$

Answer: C

D Watch Video Solution

11. What is the value of inductance L for which
the current is a maximum in series $L C R$ circuit with $C=10 \mu F$ and $\omega=1000 \frac{r a d}{s}$?

A. 1 mH

B. Cannot be calculated unless R is known

C. 10 mH
D. 100 mH

Answer: D

D Watch Video Solution

12. Some magnetic flux is changed from a coil of resitance 10Ω. As a result, an induced current is developed it, which varies with time as shown in Fig. 3.213. Find the magnitude of
the change in flux through ythe coil in weber.

A. 2 Wb
B. 4 Wb
C. 6 Wb
D. 8 Wb

Answer: A

D Watch Video Solution

13. For a satellite escape velocity is $11 \mathrm{~km} / \mathrm{s}$. If
the satellite is launched at an angle of 60°
with the vertical , then escape velocity will be
A. $11 \mathrm{kms}^{-1}$
B. $11 \sqrt{3} k m s^{-1}$
C. $\frac{11}{\sqrt{3}} k m s^{-1}$
D. $33 k \mathrm{ks}^{-1}$

Answer: A

D Watch Video Solution

14. For particles of equal masses M that move along a circle of radius R under the action of their mutual gravitational attraction. Find the speed of each particle.

$$
\begin{aligned}
& \text { A. } \frac{G M}{R} \\
& \text { B. } \sqrt{\left[2 \sqrt{2} \frac{G M}{R}\right]} \\
& \text { C. } \sqrt{\left[\frac{G M}{R}(2 \sqrt{2}+1)\right]}
\end{aligned}
$$

D. $\sqrt{\left[\frac{G M}{R}\left(\frac{2 \sqrt{2}+1}{4}\right)\right]}$

Answer: D

- Watch Video Solution

15. Four rods with different radii r and length l are used to connect two reservoirs of heat at different temperatures. Which one will conduct most heat ?

$$
\text { A. } r=1 \mathrm{~cm}, l=1 m
$$

> B. $r=1 c m, l=\frac{1}{2} m$
> C. $r=2 c m, l=2 m$
> D. $r=2 c m, l=\frac{1}{2} m$

Answer: D

- Watch Video Solution

16. The relation between efficiency ' η ' of a
heat engine and the co-efficient of performance ' α of a refrigerator is

$$
\begin{aligned}
& \text { A. } \eta=\frac{1}{1-\alpha} \\
& \text { B. } \eta=\frac{1}{1+\alpha} \\
& \text { C. } \eta=1+\alpha \\
& \text { D. } \eta=1-\alpha
\end{aligned}
$$

Answer: B

- Watch Video Solution

17. In an adiabatic expansion of 2 moles of a gas, the change in its internal energy was
found to be -100 J. The work done in this process is :

A. 0
B. 400 J
C. $-200 J$
D. 200 J

Answer: D
(Watch Video Solution
18. Two circular coils X and Y, having equal number of turns and carrying currents in the
same sense, subtend same solid angle at point
O. If the smaller coil X is midway between O
and Y and if we represent the magnetic induction due to bigger coil Y at O as B_{y} and the due to smaller coil X at O as B_{x}, then find the ratio B_{x} / B_{y}.

A. $\frac{B_{y}}{B_{x}}=1$
B. $\frac{B_{y}}{B_{x}}=2$
C. $\frac{B_{y}}{B_{x}}=\frac{1}{2}$
D. $\frac{B_{y}}{B_{x}}=\frac{1}{4}$

Answer: C

D Watch Video Solution
19. Two ions having masses in the ratio $1: 1$ and charges 1:2 are projected into uniform magnetic field perpendicular to the field with
A. $4: 3$
B. $2: 3$
C. $3: 1$
D. 1: 4

Answer: A

D Watch Video Solution
20. Two children Ramesh (on path ARB) and

Sohan (on path ASB), travel down slides of identical height h but different shapes as
shown in the figure. Assuming they start down
the frictionless slides at the same time with
zero initial velocity, which of the following
statements is true?

A. Remesh reaches the bottom first with
the same average velocity as Sohan.
B. Remesh reaches the bottom first with a
larger average acceleration than Sohan.
C. Remesh reaches the bottom first with
the same average acceleration as Sohan.
D. They reach the bottom at the same time
with the same average acceleration.

Answer: B

21. A boat crosses a river with a velocity of $8 \frac{\mathrm{~km}}{\mathrm{~h}}$. If the resulting velocity of boat is $10 \frac{k m}{h}$ then the velocity of river water is
A. $12.8 \mathrm{~km} \mathrm{~h}^{-1}$
B. $6 \mathrm{~km} \mathrm{~h}^{-1}$
C. $8 \mathrm{~km} \mathrm{~h}^{-1}$
D. $10 \mathrm{~km} \mathrm{~h}^{-1}$

Answer: B
22. A 24 kg block resting on a floor has a rope
tied to its top. The maximum tension, the rope can withstand without breaking is 310 N .

The minimum time in which the block can be
lifted a vertical distance of 4.6 m by pulling on the rope is
A. $1.2 s$
B. $1.3 s$
C. $1.7 s$

D. $2.3 s$

Answer: C

D Watch Video Solution

23. The coefficient of static friction, μ_{s} between block A mass 2 kg and the table as
shown in the figure, is 0.2 . What would be the maximum mass value of block B, so that the
two blocks do not move? The string and the pulley are asseumed to be smooth and
massless $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. 0.4 kg
B. 2.0 kg
C. 4.0 kg
D. 0.2 kg

Answer: A
24. . ${ }_{92}^{238} U$ has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes:

> A. ${ }_{92}^{234} U$
> B..${ }_{90}^{234} U$
> C..${ }_{92}^{235} T h$
> D..${ }_{93}^{237} T h$

Answer: B
25. The half-life of a radioactive substance is

20 min. The approximate time interval
$\left(t_{2}-t_{1}\right)$ between the time t_{2} when $\frac{2}{3}$ rd of its
has decayed and time t_{1} when $\frac{1}{3}$ rd of it had decayed is -
(A) 14 min
(B) 20 min
(C) 28 min
(D) 7 min
A. 14 min
B. 20 min
C. 28 min
D. 7 min

Answer: B

- Watch Video Solution

ШلШШلШلШ

26.

A metre stick swinging in vertical plane about
a fixed horizontal axis passing through its one
end undergoes small oscillation of frequency
f_{0}. If the bottom half of the stick were but off,
then its new frequency of small oscillation
woul become.
A. f_{0}
B. $\sqrt{2} f_{0}$
C. $2 f_{0}$
D. $2 \sqrt{2} f_{0}$

Answer: B

D Watch Video Solution

27. The displacement of a particle performing
simple harmonic motion is given by,

$$
x=8 \quad \sin \quad \omega t+6 \cos \quad \omega t, \quad \text { where }
$$

distance is in cm and time is in second. What is the amplitude of motion?
A. 10 cm
B. 2 cm
C. 14 cm
D. 3.5 cm

Answer: A
(Watch Video Solution
28. if λ_{v}, λ_{x} and λ_{m} represent the wavelengths of visible light X-rays and microwaves respectively then:
A. $\lambda_{m}>\lambda_{x}>\lambda_{v}$
B. $\lambda_{m}>\lambda_{v}>\lambda_{x}$
C. $\lambda_{v}>\lambda_{x}>\lambda_{m}$
D. $\lambda_{v}>\lambda_{m}>\lambda_{x}$

Answer: B

D Watch Video Solution
29. A photoelectric cell is illuminated by a point source of light $1 m$ away. When the source is shifted to $2 m$ then
A. Each emitted electron carries half the initial energy
B. Number of electrons emitted is a
quarter of the initial number
C. Each emitted electron carries one quarter of the initial energy

D. Number of electrons emitted is half the

 initial numberAnswer: B

D Watch Video Solution

30. The lower end of a glass capillary tube is
dipped in water. Water rises to a height of 9 cm . The tube is then broken at a height of 5
cm . The height of the water column and angle of contact will be
A. $5 \mathrm{~cm}, \cos ^{-1}\left(\frac{5}{9}\right)$
B. $4 c m, \cos ^{-1}\left(\frac{5}{4}\right)$
C. $5 \mathrm{~cm}, \cos ^{-1}\left(\frac{9}{5}\right)$
D. $5 \mathrm{~cm}, \cos ^{-1}\left(\frac{6}{7}\right)$

Answer: A

D Watch Video Solution
31. The radii of two soap bubbles are r_{i} and r_{2}.

In isothermal conditions, two meet together in
vacuum. Then the radius kof the resultant bubble is given by
A. $R=\left(r_{1}+r_{2}\right) / 2$
B. $R=r_{1}\left(r_{1} r_{2}+r_{2}\right)$
C. $R^{2}=r_{1}^{2}+r_{2}^{2}$
D. $R=r_{1}+r_{2}$

Answer: C
(Watch Video Solution
32. The maximum value of refractive index of a prism which permits the transmission of light through it when the refracting angl e of the prism is 90°, is given by
A. $\sqrt{3}$
B. $\sqrt{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{3}{2}$

Answer: B
33. A light ray is incident on a planemirror at an angle of 30° with horizontal. At what angle with horizontal must a plane mirror be placed in its path so that it bacomes vertically upwards after reflection?
A. 40°
B. 20°
C. 30°
D. 60°

Answer: C

- Watch Video Solution

34. A rod $P Q$ of mass M and length L is
hinged at end P. The rod is kept horizontal by
a massless string tied to point Q as shown in
the figure. When string is cut, the initial
angular accleration of the rod is.

A. $\frac{3 g}{2 L}$
B. $\frac{g}{L}$
C. $\frac{2 g}{L}$
D. $\frac{2 g}{2 L}$

Answer: A
35. A flywheel of moment of inertia $0.4 \mathrm{~kg} m^{2}$ and radius 0.2 m is free to rotate about a central axis. If a string is wrapped around it and it is pulled with a force of 10 N . Then its angular velocity after 4 s will be
A. $10 \mathrm{rads}^{-1}$
B. 5 rads $^{-1}$
C. $20 \mathrm{rads}^{-1}$
D. None of these

Answer: C

- Watch Video Solution

36. What is the conductivity of a semiconductor (in $\Omega^{-1} m^{-1}$) if electron density $=5 \times 10^{12} \mathrm{~cm}^{-3}$ and hole density

$$
=8 \times 10^{13} \mathrm{~cm}^{-3} ?
$$

$$
\left(\mu_{e}=2.3 V^{-1} s^{-1} m^{2}, \mu_{h}=0.01 m^{2} V^{-1} s^{-1}\right)
$$

A. $5.634 \Omega^{-1} m^{-1}$
B. $1.968 \Omega^{-1} m^{-1}$

C. $3.421 \Omega^{-1} m^{-1}$
 D. $8.964 \Omega^{-1} m^{-1}$

Answer: B

D Watch Video Solution
37. The current given the output as that of

A. AND gate
B. OR gate
C. NAND gate
D. NOR gate

Answer: A

D Watch Video Solution
38. Air is pumped into an automobile tube upto a pressure of 200 kPa in the morning when the air temperture is $22^{\circ} \mathrm{C}$ During the
day, temperature ries to $42^{\circ} \mathrm{C}$ and the tube expands by 2% a The pressure of the air in the tube at this temperature, will be approximately
A. 212 kPa
B. 209 kPa
C. 206 kPa
D. 200 kPa

Answer: B
39. In the releation $p=\frac{\alpha}{\beta} e^{-} \frac{a z}{k \theta}$, where p is
the pressure z is distance k is Boltzmann constant and θ is the temperature the dimensional formula β will be

> A. $\left[M^{0} L^{2} T^{0}\right]$
> B. $\left[M L^{2} T\right]$
> C. $\left[M L^{0} T^{-1}\right]$
> D. $\left[M L^{2} T^{-}\right]$

Watch Video Solution

40. In the Young's double slit experiment, a mica slip of thickness t and refractive index μ is introduced in the ray from first source S_{1}. By how much distance fringes pattern will be displaced ? ($\mathrm{d}=$ distance between the slits and D is the distance between slits and screen)
A. $\frac{d}{D}(\mu-1) t$
B. $\frac{D}{d}(\mu-1) t$
C. $\frac{1}{(\mu-1) D}$

$$
\text { D. } \frac{D}{d}(\mu-1)
$$

Answer: B

D Watch Video Solution

41. In Young's double slit experiment, one of
the slit is wider than other, so that amplitude of the light from one slit is double of that from other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:
A. $\frac{I_{m}}{9}(4+5 \cos \phi)$
B. $\frac{I_{m}}{3}\left(1+2 \cos ^{2} \cdot \frac{\phi}{2}\right)$
C. $\frac{I_{m}}{5}\left(1+4 \cos ^{2} \cdot \frac{\phi}{2}\right)$
D. $\frac{I_{m}}{9}\left(1+8 \cos ^{2} \cdot \frac{\phi}{2}\right)$

Answer: D

D Watch Video Solution

42. A metal wire of linear mass density of
$9.8 g / m$ is stretched with a tension of
$10 \mathrm{~kg}-w t$ between two rigid support 1 meter
apart. The wire passes at its middle point between the poles of a permanent magnet, and it vibrates in resonance when carrying an alternating current of frequency n. the frequency n of the alternating source is
A. 50 Hz
B. 100 Hz
C. 200 Hz
D. 25 Hz

Answer: A
43. Consider a wire with density (d) and stress
(σ). For the same density . if the stress
increases 2 times, the speed of the transverse
waves along the wire change by
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. 2
D. $\frac{1}{2}$

Answer: A

D Watch Video Solution

44. An installation consisting of an electric motor driving a water pump left 75 L of water per second to a height of 4.7 m . If the motor consumes a power of 5 kW , then efficiency of the installation is
A. 39%
B. 69%
C. 93%
D. 96%

Answer: B

D Watch Video Solution

45. A particle is projected with a velocity u making an angle θ with the horizontal. The instantaneous power of the gravitational force
A. Varies linearly with time.

B. Is constant throughout

C. Is negative for complete path
D. None of these

Answer: A

- Watch Video Solution

