©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 93

Physics

1. If M_{o} is the mass of an oxygen isotope
${ }_{.8} O^{17}, M_{p}$ and M_{N} are the masses of a
proton and neutron respectively, the nuclear binding energy of the isotope is:
A. $M_{O} c^{2}$
B. $\left(M_{O}-17 M_{n}\right) c^{2}$
C. $\left(M_{O} 8 M_{n}\right) c^{2}$
D. $\left(8 M_{p}+9 M_{n}-M_{O}\right) C^{2}$

Answer: D

D Watch Video Solution

2. A particle moves in the plane $x y$ with constant acceleration 'a' directed along the negative y-axis. The equation of motion of the particle has the form $y=p x-q x^{2}$ where p and q are positive constants. Find the velocity of the particle at the origin of co-ordinates.

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{a \sqrt{1+p^{2}}}{2 p}} \\
& \text { B. } \sqrt{\frac{a \sqrt{1+p^{2}}}{2 q}} \\
& \text { C. } \sqrt{\frac{a \sqrt{1+q^{2}}}{p}} \\
& \text { D. } \sqrt{\frac{a \sqrt{1+p^{2}}}{q}}
\end{aligned}
$$

D Watch Video Solution

3. Equal masses of two substance of densities
ρ_{1} and ρ_{2} are mixed together. What is the density of the mixture?
A. $\frac{1}{2}\left(\rho_{1}+\rho_{2}\right)$
B. $\sqrt{\rho_{1} \rho_{2}}$
C. $\frac{\rho_{1} \rho_{2}}{\left(\rho_{1}+\rho_{2}\right)}$
D. $\frac{2 \rho_{1} \rho_{2}}{\left(\rho_{1}+\rho_{2}\right)}$

Answer: D

D Watch Video Solution

4. A rectangular loop has a sliding connector PQ of length I and resistance $R(\Omega)$ and it is moving with a speed v as shown. The set-up is placed in a uniform magnetic field going into
the plane of the paper. The three currents
I_{1}, I_{2} and I are

$$
\begin{aligned}
& \text { A. } I_{1}=-I_{2}=\frac{B l v}{R}, I=\frac{2 B l v}{R} \\
& \text { B. } I_{1}=I_{2}=\frac{B l v}{3 R}, I=\frac{2 B l v}{3 R} \\
& \text { C. } I_{1}=I_{2}=I=\frac{B l v}{R} \\
& \text { D. } I_{1}=I_{2}=\frac{B l v}{6 R}, I=\frac{B l v}{3 R}
\end{aligned}
$$

- Watch Video Solution

5. A charge of 8.0 mA in the emitter current brings a charge of 7.9 mA in the collector current. The values of α and β are
A. $0.99,90$
B. $0.96,79$
C. $0.97,99$
D. $0.99,79$
6. The rate of change of torque ' τ ' with deflection θ is maximum for a magnet suspended freely in a uniform magnetic field of induction B when θ is equal to
A. $\theta=90^{\circ}$
B. $\theta=60^{\circ}$
C. $\theta=45^{\circ}$
D. $\theta=0^{\circ}$

Answer: D

D Watch Video Solution

7. The threshold frequency for a certain metal
is $3.3 \times 10^{14} \mathrm{~Hz}$. If light of frequency
$8.2 \times 10^{14} \mathrm{~Hz}$ is incident on the metal, predict
the cut-off voltage for the photoelectric emission.
A. 4.9 V
B. 3.0 V
C. 2.0 V
D. 1 V

Answer: C

D Watch Video Solution

8. For ensuring dissipation of same energy in
all three resistors $\left(R_{1}, R_{2}, R_{3}\right)$ connected as
shown in figure, their values must be related s

A. $R_{1}=R_{2}=R_{3}$
B. $R_{2}=R_{3}$ and $R_{1}=4 R_{2}$
C. $R_{2}=R_{3}$ and $R_{1}=R_{2} / 4$
D. $R_{1}=R_{2}+R_{3}$

Answer: C

9. A solid sphere of radius R_{1} and volume charge density $\rho=\frac{\rho_{0}}{r}$ is enclosed by a hollow sphere of radius R_{2} with negative surface charge density σ, such that the total charge in the system is zero . ρ_{0} is positive constant and r is the distance from the centre of the sphere. The ratio R_{2} / R_{1} is

> A. $\frac{\sigma}{\rho_{0}}$
> B. $\sqrt{\frac{2 \sigma}{\rho_{0}}}$
> C. $\sqrt{\frac{\rho_{0}}{2 \sigma}}$
D. $\frac{\rho_{0}}{\sigma}$

Answer: C

D Watch Video Solution

10. If the maximum particle velocity is 4 times
of the wave velocity then relation between
wavelength and amplitude is
A. $2 \pi A$
B. πA
C. $\frac{\pi A}{2}$
D. $\frac{\pi A}{4}$

Answer: C

- Watch Video Solution

11. In given circuit, the potential difference between points A and B is

A. 6.7 V
B. 3.7 V
C. 4 V
D. 10 V

Answer: A

D Watch Video Solution
12. Two identical wires have the same
fundamental frequency of 400 Hz . when kept under the same tension. If the tension in one wire is increased by 2% the number of beats produced will be
A. 4
B. 8
C. 2
D. 1

D Watch Video Solution

13. Average value of $K E$ and PE over entire time period is
A. $0, \frac{1}{2} m \omega^{2} A^{2}$
B. $\frac{1}{2} m \omega^{2} A^{2}, 0$
C. $\frac{1}{2} m \omega^{2} A^{2}, \frac{1}{2} m \omega^{2} A^{2}$
D. $\frac{1}{4} m \omega^{2} A^{2}, \frac{1}{4} m \omega^{2} A^{2}$

Answer: D

D Watch Video Solution

14. A block rests on a rough inclined plane making an angle of 30° with the horizontal.

The coefficient of static friction between the block and the plane is 0.8 . If the frictional force on the block is 10 N , the mass of the block (in kg) is
A. 1 kg
B. 2 kg
C. 3 kg
D. 4 kg

Answer: B

- Watch Video Solution

15. When an object is placed at a distance of

25 cm from a mirror, the magnification is m_{1}.

The object is moved 15 cm farther away with respect to the earlier position, and the
magnification becomes m_{2}. If $m_{1} / m_{2}=4$, then calculate the focal length of the mirror.
A. 20 cm , convex
B. 20 cm , concave
C. 10 cm , convex
D. 10 cm , concave

Answer: B
(Watch Video Solution
16. Flash light equipped with a new set of batteries, produces bright white light. As the batteries wear out
A. The light intensity gets reduced with no change in its colour
B. Light colour changes first to yellow and
then red with no change in intensity
C. It stops working suddenly while giving white light

D. Colour changes to red and also intensity

gets reduced

Answer: D

D Watch Video Solution

17. A conducting rod $P Q$ of length $L=1.0 m$
is moving with a uniform speed $v=2.0 \mathrm{~ms}^{-1}$
in a uniform magnetic field $B=4.0 T$ directed into the plane of the paper.

A capacitor of capacity $C=10 \mu F$ is
connected as shown in, then

A. $q A=-80 \mu C$ and $q B=+80 \mu C$
B. $q A=+80 \mu C$ and $q B=-80 \mu C$
C. $q A=0=q B$
D. Charge stored in the capacitor increase
exponentially with time

Answer: B

- Watch Video Solution

18. A cart of mass M is tied to one end of a massless rope of length 10 m . The other end of the rope is in the hands of a man of mass M.

The entire system is on a smooth horizontal
surface. The man is at $x=0$ and the cart at
$x=10 \mathrm{~m}$. If the man pulls the cart by the rope, the man and the cart will meet at the point
A. $x=0$
B. $x=5 \mathrm{~cm}$
C. $x=10 \mathrm{~m}$
D. They will never meet

Answer: B

- Watch Video Solution

19. 80 railway wagons all of same mass 5×10^{3}
kg are pulled by an engine with a force of
$4 \times 10^{5} \mathrm{~N}$. The tension in the coupling
between 30 th and st 31st wagon from the engine is :-

A. $25 \times 10^{4} N$
B. $40 \times 10^{4} N$
C. $20 \times 10^{4} N$
D. $32 \times 10^{4} N$

Answer: A

D Watch Video Solution
20. The satellite of mass m revolving in a circular orbit of radius r around the earth has kinetic energy E. then, its angular momentum will be

> A. $\sqrt{\frac{E}{m r^{2}}}$
> B. $\frac{E}{2 m r^{2}}$
C. $\sqrt{2 E m r^{2}}$
D. $\sqrt{2 E m r}$

Answer: C

21. The average density of the earth
A. Is directly proportional to g
B. Is inversely proportional to g
C. Does not depend on g
D. Is a complex function of g

Answer: A
22. A gas undergones the cyclic process shown in the figure. The cycle is repeated 100 time per minute. The power generated is

A. 240 W
B. 100 W
C. 60 W
D. 120 W

Answer: B

D Watch Video Solution

23. Find the radius of curvature of convex
surface of a plano convex lens, whose focal
length is $0.3 m$ and $\mu=1.5$.
A. 0.5 m
B. 0.75 m
C. 0.25 m
D. 1 m

Answer: D

D Watch Video Solution

24. A particle located at $x=0$ at time $t=0$, starts moving along with the positive x - direction with a velocity 'v' that varies as $v=a \sqrt{x}$. The displacement of the particle varies with time as
A. t^{3}
B. t
C. $t^{1 / 2}$
D. t^{2}

Answer: D

D Watch Video Solution

25. A force $\vec{F}=2 \hat{i}+3 \hat{j} N$ is applied to an object that is pivoted about a fixed axle aligned along the z coordinate axis. If the force is applied at the point $\vec{r}=4 \hat{i}+5 \hat{j} m$,
(a) the magnitude of the net torque about the z and (b) the direction of the torque vector τ.
A. 4
B. 1
C. 2
D. 10

Answer: C
(Watch Video Solution
26. Consider an interference pattern between two coherent sources. If I_{1} and I_{2} be intensities at points where the phase difference are $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$ and respectively, then the intensity at maxima is

$$
\begin{aligned}
& \text { A. } \frac{I_{2}-3 I_{1}}{2} \\
& \text { B. } \frac{I_{1}-3 I_{2}}{2} \\
& \text { C. } \frac{3 I_{2}-I_{1}}{2} \\
& \text { D. } \frac{3 I_{1}-I_{2}}{2}
\end{aligned}
$$

27. K_{α} wavelength emitted by an atom of atomic number $\mathrm{Z}=11$ is λ. Find the atomic number for an atom that emits K_{α} radiation with wavelength 4λ.
(a) $\mathrm{Z}=6$ (b) $\mathrm{Z}=4$
(c) $\mathrm{Z}=11$ (d) $\mathrm{Z}=44$.
A. $Z=6$
B. $Z=4$
C. $Z=11$

$$
\text { D. } Z=44
$$

Answer: A

D Watch Video Solution

28. A steel wire of length I has a magnetic moment M. It is bent into a semicircular arc.

What is the new magnetic moment?

$$
\begin{aligned}
& \text { A. } \frac{M}{\pi} \\
& \text { B. } \frac{2 M}{\pi}
\end{aligned}
$$

C. $\frac{3 M}{\pi}$
D. $\frac{4 M}{\pi}$

Answer: B

D Watch Video Solution

29. The work of 146 kJ is performed in order to
compress one kilo mole of a gas adiabatically
and in this process the temperature of the gas
increases by $7^{\circ} C$. The gas is
$\left(R=8.3 \mathrm{ml}^{-1} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. Diatomic
B. Tiatomic
C. A mixture of monoatomic and diatomic
D. None of the above

Answer: A

D Watch Video Solution

30. In a double slit experiment, the separation between the slits is $\mathrm{d}=0.25 \mathrm{~cm}$ and the distance of the screen $D=100 \mathrm{~cm}$ from the
slits. If the wavelength of light used is
$\lambda=6000 \AA$ and I_{0} is the intensity of the central bright fringe, the intensity at a distance $x=4 \times 10^{-5} m$ from the central maximum is
A. I_{0}
B. $\frac{I_{0}}{2}$
C. $\frac{3 I_{0}}{4}$
D. $\frac{I_{0}}{3}$

Answer: C
31. A radio transmitter operates at a frequency of 880 kHz and a power of 10 kW . The number of photons emitted per second are
A. 1.72×10^{31}
B. 1.327×10^{25}
C. 1.327×10^{37}
D. 1.327×10^{45}
32. The radius of the first orbit of H -atom is 0.53 Å. Find the radius of the fifth orbit.
A. $121.5 \AA$
B. $111 \AA$
C. $331.25 \AA$
D. $333 \AA$

Answer: C
33. The bob of a simple pendulum performs

SHM with period T in air and with period T_{1} in
water. Relation between T and T_{1} is (neglect
friction due to water, density of the material of
the bob is $=\frac{9}{8} \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, density of water $=$ $10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$)
A. $T_{1}=3 T$
B. $T_{1}=2 T$
C. $T_{1}=T$
D. $T_{1}=\frac{T}{2}$

Answer: A

D Watch Video Solution

34. In a uniform circular motion, the centripetal acceleration is
A. Towards the centre of the circular path
and perpendicular to the instantaneous
velocity
B. Away from the centre of the circular path and perpendicular to the instantaneous velocity
C. A variable acceleration making 45° with
the instantaneous velocity
D. A variable acceleration, parallel to the instantaneous velocity

Answer: A

D Watch Video Solution

35. In a vernier callipers, N divisions of vernier scale coincide with ($\mathrm{N}-1$) divisions of main scale
(in which 1 division represents 1 mm). The least count of the instrument in cm should be
A. $\frac{1}{N-1}$
B. $\frac{1}{10 N}$
C. N-1
D. N

Answer: B
36. A nonzero external force on a system of particles. The velocity and the acceleration of the cente of mass are found to be v_{0} and a_{0} at an instant t . It is possible that
A. $v_{0}=0, a_{0}=0$
B. $v_{0}=0, a_{0} \neq 0$
C. $v_{0} \neq 0, a_{0}=0$
D. $v_{0} \neq 0, a_{0}=1$

- Watch Video Solution

37. We have two (narrow) capillary tubes T and
T. Their lengths are I and I and radii of crosssection are r and r respectively. The rate of flow of water under a pressure difference P through tube T is $8 \mathrm{~cm} 3 / \mathrm{sec}$. If $l=2 l$ and $r=r$ what will be the rate of flow when the two tubes are connected in series and pressure difference across the combinatin is same as before $(=P)$
A. $4 c m^{3} s^{-1}$
B. $\frac{16}{3} \mathrm{~cm}^{3} s^{-1}$
C. $\frac{8}{17} \mathrm{~cm}^{3} s^{-1}$
D. $8 \mathrm{~cm}^{3} s^{-1}$

Answer: B

D Watch Video Solution

38. A disc of mass m and radius R, is placed on a smooth text service fixed surface . Point A is
the geometrical centre of the disc while point
B is the centre of mass of the disc. The moment of inertia of the dics about an axis
through its centre of mass and perpendicular to the plane of the figure is I.A constant force

F is applied to the top of the disc. The acceleration of the centre A of the disc at the instant B is below A (on the same vertical line)
will be :

A. $\frac{F}{m}$
B. $\frac{F}{m}+\frac{3 F R^{2}}{4 l}$
C. $\frac{F}{m}+\frac{F R^{2}}{4 l}$
D. $\frac{F}{m}+\frac{3 F R^{2}}{l}$

Answer: B

D Watch Video Solution

39. A particle enters uniform constant magnetic field region with is initial velocity parallel to the field direction. Which of the
following statements about its velocity is

correct ?(neglect the effects of other fields)

A. There is change in both magnitude and
direction
B. There is no change
C. There is change only in magnitude

D. There is change only in direction

Answer: B

D Watch Video Solution

40. The kinetic energy of a particle moving along a circle of radius R depends on the distance covered s as $T=a s^{2}$, where a is ticle as a function of s .
A. $2 a \frac{R^{2}}{s}$
B. $2 a s\left[1+\frac{s^{2}}{R^{2}}\right]^{\frac{1}{2}}$
C. $\frac{2 a s^{2}}{R}$
D. 2 as

Answer: B
41. A stone of mass 2 kg is projected upwards with KE of 98 J . The height at which the KE of the body becomes half its original value, is given by (take, $g=9.8 m s^{-2}$)
A. 5 m
B. 2.5 m
C. 1.5 m
D. 0.5 m

Answer: B

D Watch Video Solution

42. If a proton and anti-proton come close to
each other and annihilate, how much energy
will be released?
A. $1.5 \times 10^{-10} \mathrm{~J}$
B. $3 \times 10^{-10} J$
C. $4.5 \times 10^{-10} \mathrm{~J}$
D. $2 \times 10^{-10} J$

Answer: B

D Watch Video Solution

43. The electron density of intrinsic semiconductor at room temperature is
$10^{16} m^{-3}$. When doped with a trivalent impurity, the electron density is decreased to $10^{14} m^{-3}$ at the same temperature. The majority carrier density is
A. $10^{16} m^{-3}$
B. $10^{18} \mathrm{~m}^{-3}$
C. $10^{21} m^{-3}$
D. $10^{20} m^{-3}$

Answer: B

D Watch Video Solution

44. Two parallel plate capacitors of capacitances C and 2C are connected in parallel and charged to a potential difference
V. The battery is then disconnected and the
region between the plates of the capacitor C is
completely filled with a material of dielectric constant K. The potential differences across
the capacitors now becomes.
A. $\frac{V_{0}}{4}$
B. $\frac{V_{0}}{2}$
C. $\frac{3 V_{0}}{4}$
D. V_{0}

Answer: C

45. A steel ball of mass 0.1 kg falls freely from a height of 10 m and bounces to a height of 5.4 m from the ground. If the dissipated energy in this process is absorbed by the ball, the rise in
its temperature is (specific heat of steel

$$
\left.=460 K / \mathrm{kg}^{\circ} / C, g=10 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

A. $0.01^{\circ} C$
B. $0.1^{\circ} \mathrm{C}$
C. $1^{\circ} C$
D. $1.1^{\circ} \mathrm{C}$

Answer: B
(Watch Video Solution

